Дифференциал (математика)

Дифференциа́л (от лат. differentia «разность, различие») — линейная часть приращения функции или ее аргумента.

Обозначения

править

Обычно дифференциал функции   обозначается  . Некоторые авторы предпочитают обозначать   шрифтом прямого начертания, желая подчеркнуть, что дифференциал является оператором.

Дифференциал в точке   обозначается  , а иногда   или  , а также  , если значение   ясно из контекста.

Соответственно, значение дифференциала в точке   от   может обозначаться как  , а иногда   или  , а также  , если значение   ясно из контекста.

Использование знака дифференциала

править
  • Знак дифференциала используется в выражении для интеграла  . При этом иногда (и не вполне корректно) дифференциал   вводится как часть определения интеграла[источник не указан 2457 дней].
  • Также знак дифференциала используется в обозначении Лейбница для производной  . Это обозначение мотивировано тем, что для дифференциалов функции   и тождественной функции   верно соотношение:
     

Определения

править

Для функций

править

Дифференциал функции   в точке   может быть определён как линейная функция

 

где   обозначает производную   в точке  , а   — приращение аргумента при переходе от   к  .

Таким образом   есть функция двух аргументов  .

Дифференциал может быть определён напрямую, то есть, без привлечения определения производной, как функция  , линейно зависящая от  , и для которой верно следующее соотношение

 

Для функции нескольких переменных

править

Дифференциалом отображения   в точке   называют линейное отображение   такое, что выполняется условие

 

Связанные определения

править
  • Отображение   называется дифференцируемым в точке  , если определён дифференциал  .

Свойства

править
  • Матрица линейного оператора   равна матрице Якоби; её элементами являются частные производные  .
    • Отметим, что матрица Якоби может быть определена в точке, где дифференциал не определён.
  • Дифференциал функции   связан с её градиентом   следующим определяющим соотношением
     

История

править

Термин «дифференциал» введён Лейбницем. Изначально   применялось для обозначения «бесконечно малой» — величины, которая меньше всякой конечной величины и всё же не равна нулю. Подобный взгляд оказался неудобным в большинстве разделов математики, за исключением нестандартного анализа.

Вариации и обобщения

править

Понятие дифференциала содержит в себе больше, чем просто дифференциал функции или отображения. Его можно обобщать, получая различные важные объекты в функциональном анализе, дифференциальной геометрии, теории меры, нестандартном анализе, алгебраической геометрии и так далее.

Литература

править