Открыть главное меню

Физическая величина

Электромагнитное поле и его величины

Физи́ческая величина́ — измеряемое качество, признак или свойство материального объекта или явления[1], общее в качественном отношении для класса материальных объектов или процессов, явлений, но в количественном отношении индивидуальное для каждого из них[2]. Физические величины имеют род, размер, единицу(измерения) и значение.

Для обозначения физических величин[3][4] применяются прописные и строчные буквы латинского или греческого алфавита[5]. Часто к обозначениям добавляют верхние или нижние индексы, указывающие, к чему относится величина, например Eп часто обозначает потенциальную энергию, а cp — теплоёмкость при постоянном давлении.

Устойчивые, повторяющиеся во множестве опытов связи между физическими величинами, присущие самой природе, называются физическими законами[1].

Содержание

Общие свойства величинПравить

Качественная определённость величины называется родом. Например, однородными величинами являются длина и ширина[2]. Количественная определённость величины, присущая конкретному объекту или явлению, называется размером. Индивидуальность размеров совпадающих(однородных) величин объектов или явлений позволяет сравнивать и различать их.

 
Одна из реализаций единицы длины - метра

При измерении размер определяемой величины сравнивается с размером условной единицы[2]. Результатом такого сравнения является измеренное значение величины, показывающее во сколько раз размер величины больше или меньше размера единицы. Следовательно, значение является целью и результатом измерения.

 , где X — измеряемая величина объекта или явления, a — значение, [x] — единица величины.

Значение самой единицы [x] всегда тождественно равно 1. Размер величины не зависит от выбранной единицы, а значение изменяется при выборе другой единицы. Например, гиря массой в 1 килограмм, также имеет массу 2,2 фунта или 0,001 тонны. Значения однородных величин применяются для сравнения объектов измерения.

Различают три вида значений величин, объединённые общим термином «опорное значение»[2].

  • Истинное значение — идеальное, единственное значение величины. Термин используется тогда, когда можно пренебречь неопределённостью значения на микроуровне[2].
  • Действительное значение — получается экспериментальным путем, достаточно близко к истинному значению[2].
  • Принятое значение — значение, приписанное величине[2].

Разнообразие физических величин упорядочивается при помощи систем физических величин. В системе ограниченный перечень величин принимается за основные, а другие, производные, величины выводятся из них при помощи уравнений связи. В Международной системе величин (англ. International System of Quantities, ISQ) в качестве основных выбрано семь величин[6]:

При анализе связей между величинами применяется понятие размерности физической величины. Так называют степенной одночлен, состоящий из произведений символов основных величин в различных степенях[2]. При определении размерности, применяются стандартные математические операции — умножение, деление и сокращение степеней.Если после всех операций сокращений в размерности величины не осталось сомножителей с ненулевыми степенями, то величина называется безразмерной[2].

Определение размерности давления
Величина Уравнение связи Размерность в СИ Название единицы
Ускорение     Нет
Сила     Ньютон
Площадь     Квадратный метр
Давление     Паскаль

Физические величины, которые характеризуют объекты и явления в твёрдой Земле, а также в её жидких и газовых оболочках называются геофизическими величинами. Измерение геофизических величин в лаборатории или в полевых условиях позволяет лучше понять внутреннюю структуру планеты, а также искать и разведывать месторождения полезных ископаемых. Наука, основанная на измерениях физических величин горных пород в лабораторных условиях, называется петрофизикой[7].

Классификация физических величинПравить

  • Аддитивные и неаддитивные[2]
    • аддитивные величины — величины, значения которых могут быть суммированы, умножены на константу или разделены друг на друга. Например масса, длина, площадь.
    • неаддитивные величины величины, для которых суммирование значений бессмысленно, хотя и возможно математически. К таким величинами относится температура, плотность, удельное сопротивление.
  • Скалярные, векторные, тензорные величины
    • скалярные величины имеют значение, выражаемое только одним числом, для них не определено направление[8]. Ярким примером скалярной величины является потенциальная энергия.
    • векторные величины описываются последовательностью из трёх (или двух) независимых значений, которые называются компонентами. Векторные величины имеют скалярный модуль и направление. Векторными величинами является сила, давление, скорость и ускорение.
    • тензорные величины объединяют все остальные классы. Они возникают в материальных уравнениях для сред, например в теории упругости для описания деформаций, электромагнитной теории для уравнений материальной среды, в общей теории относительности для описания метрики.

Группы физических величинПравить

Электрические величиныПравить

Электрические величины характеризуют электрический ток — направленное движение заряженных частиц. К электрическим величинам относят:

См. такжеПравить

ПримечанияПравить

  1. 1 2 Селезнев Ю. А. Основы элементарной физики. - М., Наука, 1966. - Тираж 100 000 экз. - с. 10-11
  2. 1 2 3 4 5 6 7 8 9 10 РМГ 29-2013 ГСИ. Метрология. Основные термины и определения, РМГ от 05 декабря 2013 года №29-2013. docs.cntd.ru. Проверено 30 августа 2016.
  3. Принятые обозначения физических величин (Время, вес...) - таблицы DPVA.ru. dpva.ru. Проверено 30 августа 2016.
  4. http://hoster.bmstu.ru/~ms/normocontrol/gosts/8.417-2002.pdf
  5. Основные требования к текстовым документам. www.propro.ru. Проверено 30 августа 2016.
  6. Единицы физических величин. www.vniims.ru. Проверено 30 августа 2016.
  7. Бармасов Алесандр Викторович. Курс общей физики для природопользователей. Электричество [гриф!]. — БХВ-Петербург, 2010-01-01. — 438 с. — ISBN 9785977504201.
  8. Д. Джанколи. Физика. — Рипол Классик. — 657 с. — ISBN 9785458376396.

ЛитератураПравить

  • РМГ 29-2013 ГСИ. Метрология. Основные термины и определения.

СсылкиПравить