Символ Ле́ви-Чиви́ты — математический символ, который используется в тензорном анализе. Назван в честь итальянского математика Туллио Леви-Чивиты. Обозначается . Здесь приведён символ для трёхмерного пространства, для других размерностей меняется количество индексов (см. ниже).

Другие названия:

  • абсолютно антисимметричный единичный тензор,
  • полностью антисимметричный единичный тензор,
  • абсолютно кососимметричный объект,
  • тензор Леви-Чивиты (символ Леви-Чивиты является компонентной записью этого тензора),
  • кососимметричный символ Кронекера (данный термин использовался в учебнике по тензорному исчислению Акивиса и Гольдберга).

Определение править

 
Изображение символа Леви-Чивиты

В трёхмерном пространстве, в правом ортонормированном базисе (или вообще в правом базисе с единичным определителем метрики) символ Леви-Чивиты определяется следующим образом:

 

то есть для чётной перестановки индексов i, j, k он равен 1 (для троек (1, 2, 3), (2, 3, 1), (3, 1, 2)), для нечётной перестановки равен -1 (для троек (3, 2, 1), (1, 3, 2), (2, 1, 3)), а в остальных случаях равен нулю (при наличии повторяющихся индексов). Для компонент   в левом базисе берутся противоположные числа.

Для общего случая (произвольных косоугольных координат с правой ориентацией базисных векторов) это определение обычно меняется на

 

где   — определитель матрицы метрического тензора  , представляющий квадрат объёма параллелепипеда, натянутого на базис. Аналогично, для левого базиса берутся противоположные числа.

Такой набор компонент   представляет собой (истинный) тензор. Если, как это иногда делается в литературе, в качестве определения   использовать приведённые выше формулы для любой — как правой, так и левой — системы координат, то получившийся набор чисел будет представлять псевдотензор. При этом   будет таким же, но с заменой   на  

  может определяться также как смешанное произведение векторов базиса, в котором символ применяется:

 

Это определение для любого, правого или левого базиса, так как разница знака для левых и правых базисов заключена в смешанном произведении. Абсолютная величина каждой ненулевой компоненты равна объёму параллелепипеда, натянутого на базис  . Тензор, как и положено, антисимметричен по любой паре индексов. Определение эквивалентно приведённым выше.

Иногда пользуются альтернативным определением символа Леви-Чивиты без множителя   в любых базисах (то есть таким, что все его компоненты всегда равны ±1 или 0, как в определении выше для ортонормированных базисов). В этом случае он сам по себе не является представлением тензора. Домноженный же на   объект (совпадающий с   в определении выше и являющийся тензором) в этом случае обозначается другой буквой и называется, как правило, элементом объёма. Мы же здесь следуем определению Леви-Чивиты. (Это замечание имеет силу не только для трёхмерного пространства, но и для любой размерности.)

Геометрический смысл править

Как видно уже из определения через смешанное произведение, символ Леви-Чивиты связан с ориентированным объёмом и ориентированной площадью, представленной как вектор.

В трёхмерном (евклидовом) пространстве смешанное произведение трёх векторов

 

— это ориентированный объём (псевдоскаляр, модуль которого равен объёму, а знак зависит от ориентации тройки векторов) параллелепипеда, натянутого на три вектора  ,   и  .

Векторное произведение двух векторов

 

— это ориентированная площадь параллелограмма, стороны которого — векторы   и  , представленная псевдовектором, длина которого равна площади, а направление — ортогонально к плоскости параллелограмма.

Этот смысл сохраняется для любой размерности пространства n, если, конечно, брать   с соответствующим количеством индексов, под объёмом понимать n-мерный объём, а под площадью — (n − 1)-мерную (гипер-)площадь. При этом, естественно, в соответствующую формулу входит n и (n − 1) векторов — сомножителей. Например, для 4-мерного (евклидова) пространства:

 
 

Свойства править

  • Определитель матрицы A размера 3×3 можно записать (здесь подразумевается стандартный, а следовательно ортонормированный базис) как
     
  • Векторное произведение двух пространственных векторов записывается через этот символ:
     , где   — его компоненты, а   — векторы базиса.
  • Смешанное произведение векторов тоже:
     
  • В следующей формуле   обозначает символ Кронекера:
     
  • Суммирование по общему индексу даёт
     
  • В случае двух общих индексов   тензор сворачивается следующим образом:
     

(Везде здесь в случае ортонормированного базиса все индексы можно просто переписать как нижние.)

Обобщение на случай n измерений править

Символ Леви-Чивиты может быть легко обобщён на любое количество измерений больше единицы, если пользоваться определением через чётность перестановок индексов:

    если   есть чётная перестановка набора  
  если   есть нечётная перестановка набора  
 , если хотя бы два индекса совпадают.

То есть он равен знаку (signum) перестановки, умноженному на корень из определителя метрики   в случае, когда индексы принимают значения, реализующие перестановку набора  , а в остальных случаях ноль. (Как видим, количество индексов равно размерности пространства  .)

  • В псевдоевклидовых пространствах в случае, если сигнатура метрики такова, что  , вместо него как правило берут  , чтобы   получался вещественным.
  • Во всех размерностях, где символ Леви-Чивиты определён, он представляет тензор (имеется в виду главным образом то, что надо проследить за тем, чтобы количество индексов символа совпадало с размерностью пространства). Кроме того, как видно из написанного выше, какие-то трудности с обычным определением символа Леви-Чивиты могут быть в пространствах, где не определён метрический тензор, или, скажем,   или  .

Можно показать, что для   измерений выполняются свойства, аналогичные трёхмерным:

  •  
— что связано с тем, что существует   перестановок набора  , а следовательно, столько же ненулевых компонент   с   индексами.
  •  
После раскрытия определителя появляется множитель   и производятся упрощения в соответствующих символах Кронекера.
  • Определитель матрицы   размера   можно удобно записать с использованием  -мерного символа Леви-Чивиты
     
что является, по сути, просто переписанным с помощью этого символа определением определителя (одним из самых распространённых). Здесь базис подразумевается стандартным, и ненулевые компоненты   принимают тут значения  .
  • Прямое  -мерное обобщение векторного произведения   штук ( -мерных) векторов:
     
где   — его компоненты, а   — базисные векторы. (Здесь для краткости записано выражение для ковариантных компонент и разложение в дуальном базисе.)
  • Прямое  -мерное обобщение смешанного произведения   штук ( -мерных) векторов:
     

Безындексная запись (для n измерений) править

В безындексной тензорной записи символ Леви-Чивиты заменяется оператором дуальности, называемым звёздочка Ходжа, или просто оператор звездочка:

 

(для произвольного тензора   учитывая эйнштейновское правило суммирования).

См. также править

Ссылки править

  • Hermann R. (ed.), Ricci and Levi-Civita’s tensor analysis papers, (1975) Math Sci Press, Brookline (определение символа — см. с. 31).
  • Charles W. Misner, Kip S. Thorne, John Archibald Wheeler, Gravitation, (1970) W. H. Freeman, New York; ISBN 0-7167-0344-0. (См. параграф 3.5 для обзора применения тензоров в общей теории относительности).
  • Русский перевод: Ч. Мизнер, К. Торн, Дж. Уилер, Гравитация. — М.: Мир, 1977 (См. по указателю — Леви-Чивиты тензор).
  • Димитриенко Ю. И., Тензорное исчисление, М.: Высшая школа, 2001. — 575 с.