Открыть главное меню

Двойная специальная теория относительности

Двойная специальная теория относительности (дСТО) — модифицированная специальная теория относительности, в которую добавлены понятия планковской энергии и планковской длины.[1]

Постулаты дСТОПравить

Двойная специальная теория относительности постулирует, что

  • верен принцип относительности: все инерциальные системы отсчёта эквивалентны;
  • существуют две величины, не зависящие от наблюдателя:
    • скорость света  ;
    • некая величина  , имеющая смысл планковской длины, причём при   дСТО переходит в СТО.

ИсторияПравить

Первая попытка введения длины, не зависящей от наблюдателя, принадлежит Павлопуло (1967), оценившим её где-то в 10−15 метров.[2][3]Джованни Амелино-Камелиа (англ.) в контексте квантовой гравитации предложил[4][5] то, что легло в основу дСТО: инвариантность длины Планка

  ≈ 1,616199(97)⋅10−35 м[6][7][8],
где:

В 2001 году предложенная идея была переформулирована в терминах независимой от наблюдателя планковской длины.[9] Было также показано, что существует три модификации специальной теории относительности, которые позволяют достичь инвариантности энергии Планка либо в качестве максимальной энергии, либо в качестве максимального импульса, либо и того, и другого сразу. дСТО, возможно, связана с теорией петлевой квантовой гравитации в пространствах с сигнатурой  , либо в  .

Проблемы теорииПравить

Стоит отметить, что дСТО имеет нерешённые несоответствия в формулировках.[10][11] В частности, сложно восстановить стандартное поведение макроскопических тел («проблема футбольного мяча»[12]). Из других сложностей стоит отметить то, что дСТО сформулирована в импульсном пространстве (англ.). Формулировки в координатном пространстве пока не существует.

Существуют другие модели, в которых (в отличие от дСТО) нарушается принцип относительности и лоренц-инвариантность из-за введения привилегированных систем отсчёта (англ.). Как примеры можно упомянуть эффективную теорию поля (англ.) и расширенную теорию стандартной модели (англ.)

На сегодняшний день не наблюдается противоречий в предсказаниях с СТО (см. поиск нарушений в модели Лоренца (англ.)). Изначально предполагалось, что СТО и дСТО будут давать различные прогнозы в области высоких энергий, в частности, в оценке энергии предела Грайзена — Зацепина — Кузьмина, однако этого не происходит.

См. такжеПравить

ПримечанияПравить

  1. Amelino-Camelia, G. Doubly-Special Relativity: Facts, Myths and Some Key Open Issues (англ.) // Symmetry : journal. — 2010. — Vol. 2. — P. 230—271. — DOI:10.3390/sym2010230. — Bibcode2010arXiv1003.3942A. — arXiv:1003.3942.
  2. Pavlopoulos, T. G. Breakdown of Lorentz Invariance (англ.) // Physical Review : journal. — 1967. — Vol. 159, no. 5. — P. 1106—1110. — DOI:10.1103/PhysRev.159.1106. — Bibcode1967PhRv..159.1106P.
  3. Pavlopoulos, T. G. Are we observing Lorentz violation in gamma ray bursts? (англ.) // Physics Letters B (англ.) : journal. — 2005. — Vol. 625, no. 1—2. — P. 13—18. — DOI:10.1016/j.physletb.2005.08.064. — Bibcode2005PhLB..625...13P. — arXiv:astro-ph/0508294.
  4. Amelino-Camelia, G. Testable scenario for relativity with minimum length (англ.) // Physics Letters B (англ.) : journal. — 2001. — Vol. 510, no. 1—4. — P. 255—263. — DOI:10.1016/S0370-2693(01)00506-8. — Bibcode2001PhLB..510..255A. — arXiv:hep-th/0012238.
  5. Amelino-Camelia, G. Relativity in space–times with short-distance structure governed by an observer-independent (Planckian) length scale (англ.) // International Journal of Modern Physics D (англ.) : journal. — 2002. — Vol. 11, no. 01. — P. 35—59. — DOI:10.1142/S0218271802001330. — Bibcode2002IJMPD..11...35A. — arXiv:gr-qc/0012051.
  6. В скобках указано стандартное отклонение. Таким образом, значение планковской длины можно представить в следующих формах:   ≈ 1,616199(97) · 10−35 м =
    = (1,616199 ± 0,000097) · 10−35 м =
    = [1,616102 ÷ 1,616296] · 10−35 м
  7. NIST, «Planck length»  (англ.), NIST’s published CODATA constants
  8. Fundamental Physical Constants — Complete Listing
  9. Kowalski-Glikman, J. Observer-independent quantum of mass (англ.) // Physics Letters A (англ.) : journal. — 2001. — Vol. 286, no. 6. — P. 391—394. — DOI:10.1016/S0375-9601(01)00465-0. — Bibcode2001PhLA..286..391K. — arXiv:hep-th/0102098.
  10. Aloisio, R.; Galante, A.; Grillo, A.F.; Luzio, E.; Mendez, F. Approaching Space Time Through Velocity in Doubly Special Relativity (англ.) // Physical Review D : journal. — 2004. — Vol. 70. — P. 125012. — DOI:10.1103/PhysRevD.70.125012. — Bibcode2004PhRvD..70l5012A. — arXiv:gr-qc/0410020.
  11. Aloisio, R.; Galante, A.; Grillo, A.F.; Luzio, E.; Mendez, F. A note on DSR-like approach to space–time (англ.) // Physics Letters B (англ.) : journal. — 2005. — Vol. 610. — P. 101—106. — DOI:10.1016/j.physletb.2005.01.090. — Bibcode2005PhLB..610..101A. — arXiv:gr-qc/0501079.
  12. The Soccer-Ball Problem

ЛитератураПравить

Внешние источникиПравить