Единичная окружность — окружность с радиусом 1 и центром в начале координат[1]. Это понятие широко используется для определения и исследования тригонометрических функций.
Свойства и связанные понятия
правитьВнутренность единичной окружности называется единичным кругом.
Для координат всех точек на единичной окружности, согласно теореме Пифагора, выполняется равенство . Это равенство можно рассматривать как уравнение единичной окружности.
Тригонометрические функции
правитьС помощью единичной окружности могут быть наглядно описаны тригонометрические функции (в контексте такого описания единичную окружность иногда называют «тригонометрическим кругом», что не слишком удачно, так как рассматривается именно окружность, а не круг).
Синус и косинус могут быть описаны следующим образом: если соединить любую точку на единичной окружности с началом координат , получается отрезок, находящийся под углом относительно положительной полуоси абсцисс. Тогда получим[2]:
- ,
- .
При подстановке этих значений в уравнение окружности получается:
- .
(Используется следующая общепринятая нотация: .)
Тут же наглядно описывается периодичность тригонометрических функций, так как соответствующее углу положение отрезка не зависит от количества «полных оборотов»:
для всех целых чисел , то есть для .
Комплексная плоскость
правитьВ комплексной плоскости единичная окружность — это множество комплексных чисел, модуль которых равен 1:
Любое ненулевое комплексное число может быть однозначно записано в виде где число имеет модуль 1 и поэтому принадлежит единичной окружности,
Множество является подгруппой группы комплексных чисел по умножению. В свою очередь, содержит важные в алгебре конечные группы корней -й степени из единицы, образующие вдоль единичной окружности вершины правильного -угольника.
Радианная мера
правитьРадианную меру угла можно определить как длину той дуги, которую высекает из единичной окружности данный угол (центр окружности совпадает с вершиной угла)[3].
Вариации и обобщения
правитьПонятие единичной окружности обобщается до -мерного пространства ( ), в таком случае говорят о «единичной сфере».
Примечания
править- ↑ MathWorld.
- ↑ Гельфанд и др., 2002, с. 24—27.
- ↑ Гельфанд и др., 2002, с. 7—8.
Литература
править- Гельфанд И. М., Львовский С. М., Тоом А. Л. Тригонометрия. — М.: МЦНМО, 2002. — 199 с. — ISBN 5-94057-050-X.
Ссылки
править- Weisstein, Eric W. Unit Circle (англ.) на сайте Wolfram MathWorld.