Единичный круг — круг радиуса 1 на евклидовой плоскости (рассматриваемый обычно на комплексной плоскости); «идиоматическая» область в комплексном анализе.

Определение

править

Единичный круг — открытое подмножество комплексной плоскости, задаваемое неравенством

  или (что то же самое),  .

В действительных координатах   неравенство выглядит как:

 .

Круг связен и односвязен (например, в силу выпуклости). Границей единичного круга является единичная окружность.

Единичный круг обычно обозначается как   или  .

Автоморфизмы единичного круга

править

С точки зрения конформных отображений, автоморфизмы единичного круга составляют 3-мерную группу Ли, состоящую из дробно-линейных отображений специального вида:

 

Две степени свободы b обеспечиваются возможностью отобразить 0 (центр) в произвольную точку круга, а одна ( ) — поворотами.

С точки зрения евклидовой геометрии, разумеется, кроме поворотов у круга автоморфизмов (движений) нет.

Модель Пуанкаре

править

Оказывается, что конформные автоморфизмы круга можно рассматривать и как метрические, но если рассмотреть на круге особую (неевклидову) метрику — метрику Пуанкаре:

 

Круг оказывается, таким образом, моделью плоскости Лобачевского.

Круг или полуплоскость?

править

С точки зрения комплексного анализа, в принципе, нет разницы, которую из односвязных областей на плоскости рассматривать — по теореме Римана они все эквивалентны (кроме самой плоскости). Чаще всего используют единичный круг и верхнюю полуплоскость. И единичный круг, и полуплоскость можно рассматривать как половинки сферы Римана, разрезанной большой окружностью.

Однако, для исследований связанных со степенными рядами удобнее рассматривать именно круги (см. круг сходимости).

Другие значения

править

В принципе, «единичным кругом» можно назвать круг единичного радиуса с центром не обязательно в нуле (начале координат), и не на евклидовой плоскости.