Направленное множество

Направленное множество — непустое множество A с заданным на нем рефлексивным транзитивным отношением ≤ (то есть предпорядком), обладающее дополнительным свойством: у любой пары элементов из A есть верхняя грань в A.

Направленные множества являются обобщением линейно упорядоченных множеств, то есть любое линейно упорядоченное множество является направленным (для частично упорядоченного множества это, вообще говоря, неверно). В топологии направленные множества используются для определения направленностей, являющихся обобщением последовательности и объединяющих понятие предела, используемого в математическом анализе.

ПримерыПравить

Примеры направленных множеств:

  • Множество натуральных чисел N со стандартным отношением ≤ есть направленное множество.
  • Множество N   N пар натуральных чисел становится направленным множеством, если определить отношение следующим образом: (n0 , n1) ≤ (m0, m1) тогда и только тогда, когда n0m0 и n1m1.
  • Множество разбиений интервала при этом   если разбиение   является подразбиением  .
  • Если x0 — вещественное число, мы можем сделать из R направленное множество: ab тогда и только тогда, когда
    |ax0| ≥ |bx0|. Это пример направленного множества, не являющегося частично упорядоченным.
  • Тривиальным примером частично упорядоченного множества, не являющегося направленным, является множество {a, b}, в котором определены лишь отношения aa и bb.
  • Если T — топологическое пространство, а x0 — точка из T, то мы можем задать направление на множестве окрестностей x0 следующим образом: UV тогда и только тогда, когда U содержит V.
    • Для всех U: UU; так как U содержит себя.
    • Для всех U,V,W: если UV и VW, то UW; так как если U содержит V и V содержит W, то U содержит W.
    • Для всех U, V: существует множество U   V такое, что UU   V и VU   V; так как и U, и V содержат U   V.
  • В частично упорядоченном множестве P, множество нижних границ некоторого элемента из P, то есть множество вида {a| a из P, ax} где x — фиксированный элемент из P, является направленным множеством.

Направленные подмножестваПравить

Отношение направления может не быть антисимметричным, и, следовательно, направленные множества не всегда являются частично упорядоченными. Однако термин направленное множество также часто употребляется в контексте частично упорядоченных множеств. Таким образом, подмножество A частично упорядоченного множества (P,≤) называется направленным подмножеством, если A непусто, и для всех a и b из A существует c из A такой, что ac и bc. Здесь отношение порядка на элементах из A наследуется от P; поэтому рефлексивность и транзитивность не требуются в явном виде.

ЛитератураПравить