Часть конуса, определяемая средним геометрическим чисел и (красная), лежит между плоскостью , определяемой средним арифметическим (синяя), и частью конуса , определяемой средним гармоническим (зелёная)
Количество доказательств этого неравенства на данный момент сравнимо, наверное, только с количеством доказательств теоремы Пифагора. Приведем красивое геометрическое доказательство для случая . Пускай нам даны два отрезка длины и . Тогда построим окружность диаметром (см. рис. 1). От одного из концов диаметра отметим точку на расстоянии . Проведем через эту точку перпендикуляр к диаметру; полученная прямая пересечет окружность в двух точках, и . Рассмотрим полученную хорду. Треугольник прямоугольный, так как угол — вписанный в окружность и опирающийся на её диаметр, а значит, прямой. Итак, — высота треугольника , а высота в прямоугольном треугольнике есть среднее геометрическое двух сегментов гипотенузы. Значит, . Аналогично, из треугольника получаем, что , поэтому . Так как — хорда окружности с диаметром , а хорда не превосходит диаметра, то получаем, что , или же . Заметим, что равенство будет тогда, когда хорда будет совпадать с диаметром, то есть при .
Алгебраическое же доказательство может быть построено следующим образом:
Отметим, что первый переход равносилен в силу неотрицательности и .
Очевидно, переход от 2 к 4 по индукции влечёт за собой справедливость неравенства для , причём для интересующего нас найдётся . Полагая неравенство верным для , докажем его справедливость для . Для этого достаточно положить , тогда
По принципу индукции приведённое доказательство верно также и для .
Нужно доказать, что если , то . Воспользуемся неравенством (1), которое по предположению индукции считаем доказанным для . Пусть , причем выберем из последовательности () такие два члена, что , (такие точно существуют, т.к. ). Тогда выполнены оба условия и предполагается доказанным неравенство или . Теперь заменим на . Это возможно сделать в силу того, что или , что, очевидно выполняется, так как . Таким образом, неравенство доказано.
Эпизод с доказательством, что среднее арифметическое больше среднего геометрического, присутствует в одной из сцен кинофильма «Сердца четырёх» 1941 года.