Правила Фудзиты

Правила Фудзиты — набор из семи правил, формально описывающие геометрические построения с помощью плоского оригами, подобным построениям с помощью циркуля и линейки.

Фактически они описывают все возможные способы получения одной новой складки на листе бумаги, путём совмещения уже существующих различных элементов листа — точек и линий. Под линиями подразумеваются края листа или складки бумаги, под точками — пересечения линий. Существенным моментом является то, что сгиб формируется единственной складкой, причём в результате складывания фигура остается плоской.

Часто эти правила называют «аксиомами», хотя с формальной точки зрения аксиомами они не являются.

ПравилаПравить

Складки в этих правилах существуют не всегда, правило утверждает только, что если такая складка есть, то её «можно» найти.

Правило 1Править

Пусть заданы две точки   и  , тогда лист можно сложить так, что данные две точки будут лежать на складке.

Правило 2Править

Пусть заданы две точки   и  , тогда лист можно сложить так, что одна точка перейдёт в другую.

Правило 3Править

Пусть заданы две прямые   и  , тогда лист можно сложить так, что одна прямая перейдёт в другую.

Правило 4Править

Пусть заданы прямая   и точка  , тогда лист можно сложить так, что точка попадёт на складку, а прямая перейдёт сама в себя (то есть линия складки будет ей перпендикулярна).

Правило 5Править

Пусть заданы прямая   и две точки   и  , тогда лист можно сложить так, что точка   попадёт на складку, а   — на прямую  .

Правило 6 (складка Белок)Править

Пусть заданы две прямые   и   и две точки   и  , тогда лист можно сложить так, что точка   попадёт на прямую  , а точка   попадёт на прямую  .

Правило 7Править

Пусть заданы две прямые   и   и точка  , тогда лист можно сложить так, что точка   попадёт на прямую  , а прямая   перейдёт сама в себя (то есть линия складки будет ей перпендикулярна).

ЗамечанияПравить

Все складки в этом списке можно получить как результат последовательного применения правила номер 6. То есть для математика они ничего не добавляют, однако позволяют уменьшить количество сгибов. Система из семи правил является полной в том смысле, что они описывают все возможные способы получения одной новой складки на листе бумаги, путём совмещения уже существующих различных элементов листа. Это последнее утверждение было доказано Лэнгом[1].

Возможные и невозможные построенияПравить

ВозможныеПравить

Все построения являются ничем иным, как решениями какого-либо уравнения, причём коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому удобно говорить о построении числа — графического решения уравнения определенного типа. В рамках вышеописанных требований, возможны следующие построения:

Иначе говоря, возможно построить лишь числа равные арифметическим выражениям с использованием квадратного и кубического корней из исходных чисел (длин отрезков). В частности, при помощи таких построений можно осуществить удвоение куба, трисекцию угла, построение правильного семиугольника.

НевозможныеПравить

Решение задачи о квадратуре круга однако остаётся невозможным, так как π — трансцендентное число.

ИсторияПравить

Основное правило (номер 6) было рассмотрено Маргеритой Пьяцолла Белок[2], ей же принадлежат первые построения трисекции угла и квадратуры круга с помощью оригами-построений. Складки Белок достаточно для того чтобы получить складки во всех остальных правилах.

Полный список правил появляется в работе Жака Жюстина[3], который позднее также ссылался на Питера Мессера как на соавтора. Практически одновременно правила 1—6 были сформулированы Фумиаки Фудзитой[4]. Последнее седьмое правило добавил ещё позже Косиро Хатори[5].

Вариации и обобщенияПравить

Список возможных построений можно значительно расширить, если позволить создание нескольких складок за один раз. Хотя человек, решивший провести несколько складок за одно действие, на практике столкнется с трудностями физического порядка, тем не менее возможно вывести правила, аналогичные правилам Фудзита и для этого случая[6].

При допущении таких дополнительных правил, возможно доказать следующую теорему:

Любое алгебраическое уравнение степени   может быть решено одновременными  -кратными складками .

Представляет интерес, возможно ли решить то же уравнение складыванием, вовлекающим меньшее количество одновременных складок. Это, несомненно, верно для   и неизвестно для  [6].

См. такжеПравить

ПримечанияПравить

  1. Lang R. Origami and Geometric Constructions.
  2. Beloch, M. P. Sul metodo del ripiegamento della carta per la risoluzione dei problemi geometrici / Periodico di Mathematiche. — Ser. 4. — Vol. 16. — 1936. — pp. 104—108.
  3. Justin, J. Resolution par le pliage de l’equation du troisieme degre et applications geometriques, reprinted in Proceedings of the First International Meeting of Origami Science and Technology. — H. Huzita ed. — 1989. — pp. 251—261.
  4. Huzita Humiaki Axiomatic Development of Origami Geometry / Proceedings of the First International Meeting of Origami Science and Technology. — Humiaki Huzita, ed. — 1989. — pp. 143—158.
  5. Koshiro Hatori Origami Construction.
  6. 1 2 Alperin R. C., Lang R. J. One-, Two- and Multi-Fold Origami Axioms.

СсылкиПравить