Открыть главное меню

Ряд Лейбница — знакочередующийся ряд, названный именем исследовавшего его немецкого математика Лейбница (хотя этот ряд был известен и раньше):

Сходимость этого ряда сразу следует из теоремы Лейбница для знакочередующихся рядов. Лейбниц показал,что сумма ряда равна Это открытие впервые показало, что число , первоначально определённое в геометрии, на деле является универсальной математической постоянной; в дальнейшем этот факт постоянно находил новые подтверждения.

Скорость сходимостиПравить

Ряд Лейбница сходится крайне медленно. Нижеследующая таблица иллюстрирует скорость сходимости к   ряда, умноженного на 4.

n
(Число
членов
ряда)
 
(Частичная сумма,
верные знаки выделены
чёрным цветом)
Относительная
точность
2 2,666666666666667 0,848826363156775
4 2,895238095238095 0,921582908570213
8 3,017071817071817 0,960363786700453
16 3,079153394197426 0,980124966449415
32 3,110350273698686 0,990055241612751
64 3,125968606973288 0,995026711499770
100 3,131592903558553 0,996816980705689
1.000 3,140592653839793 0,999681690193394
10.000 3,141492653590043 0,999968169011461
100.000 3,141582653589793 0,999996816901138
1.000.000 3,141591653589793 0,999999681690114
10.000.000 3,141592553589793 0,999999968169011
100.000.000 3,141592643589793 0,999999996816901
1.000.000.000 3,141592652589793 0,999999999681690

ИсторияПравить

Ряд Лейбница легко получить через разложение арктангенса в ряд Тейлора[1]:

 

Положив   мы получаем ряд Лейбница.

Ряд Тейлора для арктангенса впервые открыл индийский математик Мадхава из Сангамаграмы, основатель Керальской школы астрономии и математики (XIV век). Мадхава использовал ряд[2][3] для вычисления числа  . Однако ряд Лейбница с   как показано выше, сходится крайне медленно, поэтому Мадхава положил   и получил гораздо быстрее сходящийся ряд[4]:

 

Сумма первых 21 слагаемых даёт значение  , причём все знаки, кроме последнего, верны[5].

Труды Мадхавы и его учеников не были известны в Европе XVII века, и разложение арктангенса было независимо переоткрыто Джеймсом Грегори (1671) и Готфридом Лейбницем (1676). Поэтому некоторые источники предлагают называть данный ряд «рядом Мадхавы — Лейбница» или «рядом Грегори — Лейбница». Грегори, впрочем, не связал этот ряд с числом  

Ускорение сходимостиПравить

Ещё одна модификация ряда Лейбница, делающая его практически пригодным для вычисления   — попарное объединение членов ряда. В результате получим следующий ряд:

 

Для дальнейшей оптимизации вычислений можно применить формулу Эйлера — Маклорена и использовать методы численного интегрирования.

См. такжеПравить

ПримечанияПравить

  1. Фихтенгольц, 2003, с. 401.
  2. Паплаускас А. Б. Доньютоновский период развития бесконечных рядов. Часть I // Историко-математические исследования. — М.: Наука, 1973. — Т. XVIII. — С. 104—131.
  3. C. T. Rajagopal and M. S. Rangachari. On an untapped source of medieval Keralese Mathematics (англ.) // Archive for History of Exact Sciences : journal. — 1978. — June (vol. 18). — P. 89—102. — DOI:10.1007/BF00348142.
  4. Вездесущее число «пи», 2007, с. 47.
  5. R C Gupta. Madhava's and other medieval Indian values of pi (англ.) // Math. Education. — 1975. — Vol. 9, no. 3. — P. B45—B48.

ЛитератураПравить

  • Жуков А. В. Вездесущее число «пи». — 2-е изд. — М.: Издательство ЛКИ, 2007. — 216 с. — ISBN 978-5-382-00174-6.
  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — М.: ФИЗМАТЛИТ, 2003. — Т. 2. — 864 с. — ISBN 5-9221-0157-9.

СсылкиПравить