Кружевное зацепление

Кружевной узел (−2,3,7)[en] имеет две правосторонние скрутки в первом плетении[en], три левосторонние скрутки во втором и семь левосторонних скруток в третьем.

В теории узлов кружевное зацепление (или крендельное зацепление) — это специальный вид зацепления. Кружевное зацепление, являющееся также узлом (то есть зацеплением с одной компонентой), называется кружевным узлом, крендельным узлом или просто кренделем.

В стандартной проекции кружевное зацепление [1] имеет левосторонних скруток в первом плетении[en][2], во втором и, в общем случае, в n-ом.

Кружевное зацепление можно описать как зацепление Монтезиноса[en] с целым числом переплетений.

Некоторые базовые результатыПравить

Кружевное зацепление   является узлом тогда и только тогда, когда и  , и все   являются нечётными или в точности одно из чисел   чётно [3].

Кружевное зацепление   является разводимым[en], если по меньшей мере два   равны нулю. Однако обратное неверно.

Кружевное зацепление   является отражением кружевного зацепления  .

Кружевное зацепление   эквивалентно (то есть гомотопически эквивалентно на S3) кружевному зацеплению  . Тогда, также, кружевное зацепление   эквивалентно кружевному зацеплению  [3].

Кружевное зацепление   эквивалентно кружевному зацеплению  . Однако если ориентировать зацепление в каноническом виде, эти два зацепления имеют противоположную ориентацию.

ПримерыПравить

 
Трилистник

Кружевной узел (1, 1, 1) — это (правосторонний) трилистник, а узел (−1, −1, −1) является его зеркальным отражением.

 
Стивидорный
узел

Кружевной узел (5, −1, −1) — это стивидорный узел (61).

Если p, q и r являются различными нечётными числами, большими 1, то кружевной узел (p, q, r) является необратимым.

Кружевное зацепление (2p, 2q, 2r) — это зацепление, образованное тремя связанными тривиальными узлами.

 
Прямой узел

Кружевной узел (−3, 0, −3) (прямой узел) является связной суммой двух трилистников.

Кружевное зацепление (0, q, 0)) — это разводимое зацепление[en] тривиального узла с другим узлом.

Зацепление МонтесиносаПравить

 
Зацепление Монтесиноса. В этом примере   ,   и   .

Зацепление Монтесиноса — это специальный вид зацепления, обобщающее кружевные зацепления (кружевное зацепление можно считать зацеплением Монтесиноса с целыми переплетениями). Зацепление Монтесиноса, являющееся также узлом (то есть, зацепление с однлй компонентой) является узлом Монтесиноса.

Зацепление Монтесиноса состоит из нескольких рациональных плетений[en]. Одним из обозначений зацепления Монтесиноса является   [4].

В этих обозначениях   и все   и   являются целыми числами. Зацепление Монтесиноса, заданное таким обозначением, состоит из суммы[en] рациональных плетений, заданных целым числом  , и рациональных плетений  

ИспользованиеПравить

 
Съедобный кружевной узел (−2,3,7)

Кружевные зацепления (−2, 3, 2n + 1) особенно полезны при изучении 3-многообразий[en]. В частности, для этих многообразий многие результаты были установлены на основе хирургии Дена[en] на кружевном узле (−2,3,7)[en].

Гиперболический объём дополнения кружевного зацепления (−2,3,8) равен учетверённой постоянной Каталана, примерно 3,66. Это кружевное зацепление является одним из двух гиперболических многообразий с двумя каспами с минимальными возможными объёмами, второе многообразие является дополнением зацепления Уайтхеда2010.

ПримечанияПравить

  1. Использована нотация Конвея для узлов с добавлением скобок для удобства.
  2. Вместо «плетение» также говорят «тангл» или «связка».
  3. 1 2 Kawauchi, 1996.
  4. Zieschang, 1984, с. 378–389.

ЛитератураПравить

Литература для дальнейшего чтенияПравить

  • Hale F. Trotter. Topology. — Pergamon Press, 1963. — Т. 2. — С. 272—280.
  • Akio Kawauchi. A survey of knot theory. — Birkhäuser, 1996. — ISBN 3-7643-5124-1.
  • Heiner Zieschang. Classification of Montesinos knots // Topology / A. Dold, B. Eckmann/Ludwig D.Faddeev, Arkadii A. Mal’cev. General and Algebraic Topology, and Applications. Proceeding of the International Topological Conference held in Leningrad, August 23-27, 1982. — Berlin Heidelberg: Springer, 1984. — Т. 1060. — (Lecture Notes in Mathematics/USSR). — ISBN 3-540-13337-2. — ISBN 0-387-13337-2.