В математике, симметрической алгеброй (также обозначается ) векторного пространства над полем называется свободная коммутативная ассоциативная алгебра с единицей, содержащая .

Иначе говоря, симметрическую алгебру можно определить как факторалгебру тензорной алгебры по двустороннему идеалу, порождённому элементами вида . Она удовлетворяет следующему универсальному свойству: для любого линейного отображения из в коммутативную алгебру существует единственный гомоморфизм алгебр такой, что , где  — вложение.

Симметрическая алгебра имеет градуированную структуру:

где  — векторное подпространство, порождённое произведением векторов из .

См. также править

Ссылки править