Открыть главное меню

Большая полуось — это один из основных геометрических параметров объектов, образованных посредством конического сечения.

Содержание

ЭллипсПравить

 
Основные параметры эллипса

Большой осью эллипса называется его наибольший диаметр — отрезок проходящий через центр и два фокуса. Большая полуось составляет половину этого расстояния и идёт от центра эллипса через фокус к его краю.

Под углом в 90° к большой полуоси располагается малая полуось — минимальное расстояние от центра эллипса до его края. У частного случая эллипса — круга — большая и малая полуоси равны и являются радиусами. Таким образом, можно рассматривать большую и малую полуоси как некоего рода радиусы эллипса.

Длина большой полуоси   связана с длиной малой полуоси   через эксцентриситет  , фокальный параметр   и фокальное расстояние (полурасстояние между фокусами)   следующим образом:

 
 
 
 

Большая полуось представляет собой среднее арифметическое между расстояниями от любой точки эллипса до его фокусов.

Рассмотрев уравнение в полярных координатах, с точкой в начале координат (полюс) и лучом, начинающейся из этой точки (полярная ось):

 

Получим средние значения   и   и большую полуось  

ПараболаПравить

 
График построения параболы простейшей функции y = x2

Параболу можно получить как предел последовательности эллипсов, где один фокус остаётся постоянным, а другой отодвигается в бесконечность, сохраняя   постоянным. Таким образом   и   стремятся к бесконечности, причём   быстрее, чем  .

ГиперболаПравить

Большая полуось гиперболы составляет половину минимального расстояния между двумя ветвями гиперболы, на положительной и отрицательной сторонах оси   (слева и справа относительно начала координат). Для ветви расположенной на положительной стороне, полуось будет равна:

 

Если выразить её через коническое сечение и эксцентриситет, тогда выражение примет вид:

 .

Прямая, содержащая большую ось гиперболы, называется поперечной осью гиперболы.[1]

АстрономияПравить

Орбитальный периодПравить

В небесной механике орбитальный период   обращения малых тел по эллиптической или круговой орбите вокруг более крупного центрального тела рассчитывается по формуле:

 

где:

  — это размер большой полуоси орбиты
  — это стандартный гравитационный параметр

Следует обратить внимание, что в данной формуле для всех эллипсов период обращения определяется значением большой полуоси, независимо от эксцентриситета.

В астрономии большая полуось, наряду с орбитальным периодом, является одним из самых важных орбитальных элементов орбиты космического тела.

Для объектов Солнечной системы большая полуось связана с орбитальным периодом по третьему закону Кеплера.

 

где:

  — орбитальный период в годах;
  — большая полуось в астрономических единицах.

Это выражение является частным случаем общего решения задачи двух тел Исаака Ньютона:

 

где:

  — гравитационная постоянная
  — масса центрального тела
  — масса обращающегося вокруг него спутника. Как правило, масса спутника настолько мала по сравнению с массой центрального тела, что ею можно пренебречь. Поэтому, сделав соответствующие упрощения в этой формуле, получим данную формулу в упрощённом виде, который приведён выше.

Орбита движения спутника вокруг общего с центральным телом центра масс (барицентра), представляет собой эллипс. Большая полуось используется в астрономии всегда применительно к среднему расстоянию между планетой и звездой, в результате орбиты планет Солнечной системы приведены к гелиоцентрической системе, а не к системе движения вокруг центра масс. Эту разницу удобнее всего проиллюстрировать на примере системы Земля—Луна. Отношение масс в этом случае составляет 81,30059. Большая полуось геоцентрической орбиты Луны составляет 384 400 км, в то время как расстояние до Луны относительно центра масс системы Земля—Луна составляет 379 700 км — из-за влияния массы Луны центр масс находится не в центре Земли, а на расстоянии 4700 км от него. В итоге средняя орбитальная скорость Луны относительно центра масс составляет 1,010 км/с, а средняя скорость Земли — 0,012 км/с. Сумма этих скоростей даёт орбитальную скорость Луны 1,022 км/с; то же самое значение можно получить, рассматривая движение Луны относительно центра Земли, а не центра масс.

Среднее расстояниеПравить

Часто говорят, что большая полуось является средним расстоянием между центральным и орбитальным телом. Это не совсем верно, так как под средним расстоянием можно понимать разные значения — в зависимости от величины, по которой производят усреднение:

  • усреднение по эксцентрической аномалии. В таком случае среднее расстояние будет точно равно большой полуоси орбиты.
  • усреднение по истинной аномалии, тогда среднее расстояние будет точно равно малой полуоси орбиты.
  • усреднение по средней аномалии даст значение среднего расстояния, усреднённое по времени:
 
  • усреднение по радиусу, которое получают из следующего соотношения:
 

Энергия; расчёт большой полуоси методом векторов состоянияПравить

В небесной механике большая полуось   может быть рассчитана методом векторов орбитального состояния:

 

для эллиптических орбит

 

для гиперболической траектории

и

 

(en:specific orbital energy)

и

 

(стандартный гравитационный параметр), где:

  — орбитальная скорость спутника, на основе вектора скорости,
  — вектор положения спутника в координатах системы отсчёта, относительно которой должны быть вычислены элементы орбиты (например, геоцентрический в плоскости экватора — на орбите вокруг Земли, или гелиоцентрический в плоскости эклиптики — на орбите вокруг Солнца),
  — гравитационная постоянная,
  и   — массы тел.

Большая полуось рассчитывается на основе общей массы и удельной энергии, независимо от значения эксцентриситета орбиты.

См. такжеПравить

ПримечанияПравить

СсылкиПравить