Выборочная дисперсия в математической статистике — это оценка теоретической дисперсии распределения, рассчитанная на основе данных выборки. Виды выборочных дисперсий:
- смещённая;
- несмещённая, или исправленная
Определения
правитьПусть — выборка из распределения вероятности. Тогда
- выборочная дисперсия — это случайная величина
- ,
где символ обозначает выборочное среднее;
- несмещённая (исправленная) дисперсия — это случайная величина
- .
Замечание
правитьОчевидно,
- .
Свойства выборочных дисперсий
править- Выборочная дисперсия является теоретической дисперсией выборочного распределения. Более точно, пусть — выборочная функция распределения данной выборки. Тогда для любого фиксированного функция является (неслучайной) функцией дискретного распределения. Дисперсия этого распределения равна .
- Обе выборочные дисперсии являются состоятельными оценками теоретической дисперсии. Если , то
и
- ,
где символ « » обозначает сходимость по вероятности.
- Выборочная дисперсия является смещённой оценкой теоретической дисперсии, а исправленная выборочная дисперсия — несмещённой:
- ,
и
- .