Икосаэдрическая пирамида

Диаграмма Шлегеля: проекция (перспектива) правильной икосаэдрической пирамиды в трёхмерное пространство
Тип Многогранная пирамида[англ.]
Символ Шлефли ( ) ∨ {3,5}
Ячеек 21
Граней 50
Рёбер 42
Вершин 13
Двойственный политоп Додекаэдрическая пирамида

Икосаэдри́ческая пирами́дачетырёхмерный многогранник (многоячейник): многогранная пирамида[англ.], имеющая основанием икосаэдр.

Ортогональная двумерная проекция равногранной икосаэдрической пирамиды, вращающейся вокруг плоскости, проходящей через два параллельных ребра её основания

Описание

править

Ограничена 21 трёхмерной ячейкой — 20 тетраэдрами и 1 икосаэдром. Икосаэдрическая ячейка окружена всеми двадцатью тетраэдрическими; каждая тетраэдрическая ячейка окружена икосаэдрической и тремя тетраэдрическими.

Её 50 двумерных граней — треугольники. 20 граней разделяют икосаэдрическую и тетраэдрическую ячейки, остальные 30 — две тетраэдрических.

Имеет 42 ребра. На 30 рёбрах сходятся по три грани и по три ячейки (икосаэдрическая и две тетраэдрических), на остальных 12 — по пять граней и по пять ячеек (только тетраэдрические).

Имеет 13 вершин. В 12 вершинах сходятся по 6 рёбер, по 10 граней и по 6 ячеек (икосаэдрическая и пять тетраэдрических); в 1 вершине — 12 рёбер, 30 граней и все 20 тетраэдрических ячеек.

Равногранная икосаэдрическая пирамида

править

Если все рёбра икосаэдрической пирамиды имеют равную длину  , её грани являются одинаковыми правильными треугольниками. Четырёхмерный гиперобъём и трёхмерная гиперплощадь поверхности такой пирамиды выражаются соответственно как

 
 

Высота пирамиды при этом будет равна

 

радиус описанной гиперсферы (проходящей через все вершины многоячейника) —

 

радиус внешней полувписанной гиперсферы (касающейся всех рёбер в их серединах) —

 

радиус внутренней полувписанной гиперсферы (касающейся всех граней в их центрах) —

 

радиус вписанной гиперсферы (касающейся всех ячеек) —

 

Центр вписанной гиперсферы располагается внутри пирамиды, центры описанной и обеих полувписанных гиперсфер — в одной и той же точке вне пирамиды.

Такую пирамиду можно получить, взяв выпуклую оболочку любой вершины шестисотячейника и всех 12 соседних вершин, соединённых с ней ребром.

Угол между двумя смежными тетраэдрическими ячейками будет равен   как и в шестисотячейнике. Угол между икосаэдрической ячейкой и любой тетраэдрической будет равен  

В координатах

править

Равногранную икосаэдрическую пирамиду с длиной ребра   можно разместить в декартовой системе координат так, чтобы её вершины имели координаты

  •  
  •  
  •  
  •  

где   — отношение золотого сечения.

Ссылки

править