Открыть главное меню

Постоянная Планка

Постоя́нная Пла́нка (квант действия) — основная константа квантовой теории, коэффициент, связывающий величину энергии кванта электромагнитного излучения с его частотой, так же как и вообще величину кванта энергии любой линейной колебательной физической системы с её частотой. Связывает энергию и импульс с частотой и пространственной частотой, действие с фазой. Является квантом момента импульса. Впервые упомянута Планком в работе, посвящённой тепловому излучению, и потому названа в его честь. Обычное обозначение — латинское .

16 ноября 2018 года на заседании 26 Генеральной Конференции Мер и Весов были приняты изменения определений основных единиц СИ, предложенные в 2018 году Международным комитетом мер и весов. Новые определения СИ вступили в силу 20 мая 2019[1]. В соответствии с резолюцией XXVI ГКМВ постоянная Планка в точности равна 6,626 070 15⋅10−34 кг·м2·с−1

Физический смыслПравить

В квантовой механике импульс имеет физический смысл волнового вектора[источник не указан 669 дней], энергия — частоты, а действие — фазы волны, однако традиционно (исторически) механические величины измеряются в других единицах (кг·м/с, Дж, Дж·с), чем соответствующие волновые (м−1, с−1, безразмерные единицы фазы). Постоянная Планка играет роль переводного коэффициента (всегда одного и того же), связывающего эти две системы единиц — квантовую и традиционную:

  (импульс),
  (энергия),
  (действие).

Если бы система физических единиц формировалась уже после возникновения квантовой механики и приспосабливалась для упрощения основных теоретических формул, константа Планка вероятно просто была бы сделана равной единице, или, во всяком случае, более круглому числу. В теоретической физике очень часто для упрощения формул используется система единиц с  , в ней

 
 
 
 

Постоянная Планка имеет и простую оценочную роль в разграничении областей применимости классической и квантовой физики. В сравнении с величиной характерных для рассматриваемой системы величин действия или момента импульса, или произведений характерного импульса на характерный размер, или характерной энергии на характерное время, — постоянная Планка показывает, насколько применима к данной физической системе классическая механика. А именно, если  — действие системы, а  — её момент импульса, то при   или   поведение системы с хорошей точностью описывается классической механикой. Эти оценки достаточно прямо связаны с соотношениями неопределённостей Гейзенберга.

История открытияПравить

Формула Планка для теплового излученияПравить

Основная статья: Формула Планка

Формула Планка — выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком для равновесной плотности излучения  . Формула Планка была получена после того, как стало ясно, что формула Рэлея — Джинса удовлетворительно описывает излучение только в области длинных волн. В 1900 году Планк предложил формулу с постоянной (впоследствии названной постоянной Планка), которая хорошо согласовывалась с экспериментальными данными. При этом Планк полагал, что данная формула является всего лишь удачным математическим трюком, но не имеет физического смысла. То есть Планк не предполагал, что электромагнитное излучение испускается в виде отдельных порций энергии (квантов), величина которых связана с циклической частотой излучения выражением:

 

Коэффициент пропорциональности ħ впоследствии назвали постоянной Планка, ħ ≈ 1,054⋅10−34 Дж·с.

ФотоэффектПравить

Основная статья: Фотоэффект

Фотоэффект — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он, благодаря номинации шведского физика Озеена, получил Нобелевскую премию) на основе гипотезы Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза — если Планк предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантованных порций. Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта:

 

где   — т. н. работа выхода (минимальная энергия, необходимая для удаления электрона из вещества),   — кинетическая энергия вылетающего электрона,   — частота падающего фотона с энергией     — постоянная Планка. Из этой формулы следует существование красной границы фотоэффекта, то есть существование наименьшей частоты, ниже которой энергии фотона уже недостаточно для того, чтобы «выбить» электрон из тела. Суть формулы заключается в том, что энергия фотона расходуется на ионизацию атома вещества, то есть на работу, необходимую для «вырывания» электрона, а остаток переходит в кинетическую энергию электрона.

Эффект КомптонаПравить

Основная статья: Эффект Комптона

ПереопределениеПравить

На XXIV Генеральной конференции по мерам и весам (ГКМВ) 17—21 октября 2011 года была единогласно принята резолюция[2], в которой, в частности, предложено в будущей ревизии Международной системы единиц (СИ) переопределить единицы измерений СИ таким образом, чтобы постоянная Планка была равной точно 6,62606X⋅10−34 Дж·с, где Х заменяет одну или более значащих цифр, которые будут определены в дальнейшем на основании наиболее точных рекомендаций CODATA[3]. В этой же резолюции предложено таким же образом определить как точные значения постоянную Авогадро, элементарный заряд и постоянную Больцмана. XXV ГКМВ, состоявшаяся в 2014 году, приняла решение продолжить работу по подготовке новой ревизии СИ, включающей привязку основных единиц СИ к точному значению постоянной Планка, и предварительно наметила закончить эту работу к 2018 году с тем, чтобы заменить существующую СИ обновлённым вариантом на XXVI ГКМВ[4]. В 2019 году постоянная Планка получила фиксированное значение как и постоянная Больцмана, постоянная Авогадро и другие[5].

Значения постоянной ПланкаПравить

Ранее постоянная Планка была экспериментально измеряемой величиной, точность известного значения которой постоянно повышалась. В результате изменений СИ 2019 года было принято фиксированное точное значение постоянной Планка:

h = 6,626 070 15 × 10−34 Дж·c[6];
h = 6,626 070 15 × 10−27 эрг·c;
h = 4,135 667 669… × 10−15 эВ·c[6].

Это значение является составной частью определения Международной системы единиц.

Часто применяется величина  :

ħ = 1,054 571 817… × 10−34 Дж·c[6];
ħ = 1,054 571 817… × 10−27 эрг·c;
ħ = 6,582 119 569… × 10−16 эВ·c[6],

называемая редуцированной (иногда рационализированной или приведённой) постоянной Планка или постоянной Дирака. Применение этого обозначения упрощает многие формулы квантовой механики, так как в эти формулы традиционная постоянная Планка входит в виде деленной на константу  .

В ряде естественных систем единиц является единицей измерения действия[7]. В планковской системе единиц, также относящейся к естественным системам, служит в качестве одной из основных единиц системы.

Методы измеренияПравить

Использование законов фотоэффектаПравить

При данном способе измерения постоянной Планка используется закон Эйнштейна для фотоэффекта:

 

где   — максимальная кинетическая энергия вылетевших с катода фотоэлектронов,

  — частота падающего света,
  — т. н. работа выхода электрона.

Измерение проводится так. Сначала катод фотоэлемента облучают монохроматическим светом с частотой  , при этом на фотоэлемент подают запирающее напряжение, так, чтобы ток через фотоэлемент прекратился. При этом имеет место следующее соотношение, непосредственно вытекающее из закона Эйнштейна:

 

где   — заряд электрона.

Затем тот же фотоэлемент облучают монохроматическим светом с частотой   и точно так же запирают его с помощью напряжения  

 

Почленно вычитая второе выражение из первого, получаем

 

откуда следует

 

Анализ спектра тормозного рентгеновского излученияПравить

Этот способ считается самым точным из существующих. Используется тот факт, что частотный спектр тормозного рентгеновского излучения имеет точную верхнюю границу, называемую фиолетовой границей. Её существование вытекает из квантовых свойств электромагнитного излучения и закона сохранения энергии. Действительно,

 

где   — скорость света,

  — длина волны рентгеновского излучения,
  — заряд электрона,
  — ускоряющее напряжение между электродами рентгеновской трубки.

Тогда постоянная Планка равна

 

См. такжеПравить

ПримечанияПравить

  1. Conover, Emily It's official: We're redefining the kilogram. Science News (16 November 2018). Дата обращения 16 ноября 2018.
  2. On the possible future revision of the International System of Units, the SI. Resolution 1 of the 24th meeting of the CGPM (2011).
  3. Agreement to tie kilogram and friends to fundamentals — physics-math — 25 October 2011 — New Scientist
  4. On the future revision of the International System of Units, the SI (англ.). Resolution 1 of the 25th CGPM (2014). BIPM. Дата обращения 6 июля 2017.
  5. The International System of Units - making measurements fundamentally better. BIPM. Дата обращения 22 мая 2019.
  6. 1 2 3 4 Fundamental Physical Constants — Complete Listing
  7. Tomilin K. A. Natural Systems of Units: To the Centenary Anniversary of the Planck System (англ.). Proc. of the XXII Internat. Workshop on high energy physics and field theory (June 1999). Дата обращения 22 декабря 2016.

ЛитератураПравить

СсылкиПравить