Степенна́я фу́нкцияфункция , где (показатель степени) — некоторое вещественное число[1][2]. К степенным часто относят и функцию вида , где — некоторый (ненулевой) коэффициент[3]. Существует также комплексное обобщение степенной функции[⇨].

Степенная функция является частным случаем многочлена. На практике показатель степени почти всегда является целым или рациональным числом.

Вещественная функция

править

Область определения

править

Для целых положительных показателей   степенную функцию можно рассматривать на всей числовой прямой, тогда как для отрицательных  , функция не определена в нуле (нуль является её особой точкой)[4].

Для рациональных   область определения зависит от чётности   и от знака   так как  :

  • Если   нечётно и  , то   определён на всей числовой прямой.
  • Если   нечётно и  , то   определён на всей числовой прямой, кроме нуля.
  • Если   чётно и  , то   определён при неотрицательных  
  • Если   чётно и  , то   определён при положительных  

Для вещественного показателя   степенная функция  , вообще говоря, определена только при   Если   то функция определена и в нуле[4].

Целочисленный показатель степени

править

Графики степенной функции   при целочисленном показателе  :

При нечётном   графики центрально-симметричны относительно начала координат, в котором имеет точку перегиба. При чётном   степенная функция чётна:   её график симметричен относительно оси ординат[5].

Графики степенной функции при натуральном показателе   называются параболами порядка  . При чётном   функция всюду неотрицательна (см. графики). При   получается функция  , называемая линейной функцией или прямой пропорциональной зависимостью[3][5].

Графики функций вида  , где   — натуральное число, называются гиперболами порядка  . При нечётном   оси координат являются асимптотами гипербол. При чётном   асимптотами являются ось абсцисс и положительное направление оси ординат (см. графики)[6]. При показателе   получается функция  , называемая обратной пропорциональной зависимостью[3][5].

При   функция вырождается в константу:  

Рациональный показатель степени

править

Возведение в рациональную степень   определяется формулой:

 

Если  , то функция представляет собой арифметический корень степени  :

 

Пример: из третьего закона Кеплера непосредственно вытекает, что период   обращения планеты вокруг Солнца связан с большой полуосью   её орбиты соотношением:   (полукубическая парабола).

Свойства

править

Монотонность

править

В интервале   функция монотонно возрастает при   и монотонно убывает при   Значения функции в этом интервале положительны[3].

Аналитические свойства

править

Функция непрерывна и неограниченно дифференцируема во всех точках, в окрестности которых она определена[4].

Производная функции:  .

Ноль, вообще говоря, является особой точкой. Так, если  , то  -я производная в нуле не определена. Например, функция   определена в нуле и в его правой окрестности, но её производная   в нуле не определена.

Неопределённый интеграл[4]:

  • Если  , то  
  • При   получаем:  

Таблица значений малых степеней

править
n n2 n3 n4 n5 n6 n7 n8 n9 n10
2 4 8 16 32 64 128 256 512 1024
3 9 27 81 243 729 2187 6561 19 683 59 049
4 16 64 256 1024 4096 16 384 65 536 262 144 1 048 576
5 25 125 625 3125 15 625 78 125 390 625 1 953 125 9 765 625
6 36 216 1296 7776 46 656 279 936 1 679 616 10 077 696 60 466 176
7 49 343 2401 16 807 117 649 823 543 5 764 801 40 353 607 282 475 249
8 64 512 4096 32 768 262 144 2 097 152 16 777 216 134 217 728 1 073 741 824
9 81 729 6561 59 049 531 441 4 782 969 43 046 721 387 420 489 3 486 784 401
10 100 1000 10 000 100 000 1 000 000 10 000 000 100 000 000 1 000 000 000 10 000 000 000

Комплексная функция

править

Степенная функция комплексного переменного   в общем виде определяется формулой[7]:

 

Здесь показатель степени   — некоторое комплексное число. Значение функции, соответствующее главному значению логарифма, называется главным значением степени. Например, значение   равно   где   — произвольное целое, а его главное значение есть  

Комплексная степенная функция обладает значительными отличиями от своего вещественного аналога. В силу многозначности комплексного логарифма она, вообще говоря, также имеет бесконечно много значений. Однако два практически важных случая рассматриваются отдельно.

  1. При натуральном показателе степени функция   однозначна и n-листна[8].
  2. Если показатель степени — положительное рациональное число, то есть (несократимая) дробь  , то у функции будет   различных значений[7].

См. также

править

Примечания

править
  1. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том I, §48: Важнейшие классы функций..
  2. Выгодский М. Я. Справочник по элементарной математике. М.: Наука,1978. Стр. 312.
  3. 1 2 3 4 Математическая энциклопедия, 1985.
  4. 1 2 3 4 БРЭ.
  5. 1 2 3 Математический энциклопедический словарь, 1988.
  6. Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. — изд. 13-е. — М.: Наука, 1985. — С. 171—172. — 544 с.
  7. 1 2 Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том II, стр. 526-527..
  8. Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной. — М.: Наука, 1967. — С. 88. — 304 с.

Литература

править

Ссылки

править