Эллиптическое уравнение

(перенаправлено с «Эллиптические уравнения»)

Эллиптические уравнения — класс дифференциальных уравнений в частных производных, описывающих стационарные процессы.

ОпределениеПравить

Рассмотрим общий вид скалярного дифференциального уравнения в частных производных второго порядка относительно функции  :

 

При этом уравнение записано в симметричном виде, то есть:  . Тогда эквивалентное уравнение в виде квадратичной формы:

 ,

где  .
Матрица   называется матрицей главных коэффициентов.
Если все собственные значения матрицы   имеют одинаковый знак, то уравнение относят к эллиптическому типу[1].
Другое, эквивалентное определение: уравнение называется эллиптическим, если оно представимо в виде:

 ,

где   — эллиптический оператор.

Эллиптические уравнения противопоставляются параболическим и гиперболическим, хотя данная классификация не является исчерпывающей.

Решение эллиптических уравненийПравить

Для аналитического решения эллиптических уравнений при заданных граничных условиях применяют метод разделения переменных Фурье, метод функции Грина и метод потенциалов.

Примеры эллиптических уравненийПравить

В математической физике эллиптические уравнения возникают в задачах, сводящихся лишь к пространственным координатам: от времени либо ничего не зависит (стационарные процессы), либо оно каким-то образом исключается.

А также многие другие стационарные аналоги гиперболических и параболических уравнений.

См. такжеПравить

ПримечанияПравить

  1. Тихонов А.Н, Самарский А.А. Уравнения математической физики. — 5-е изд. — Москва: Наука, 1977.