Совершенное поле

В общей алгебре, поле k называется совершенным если выполняется одно из следующих эквивалентных условий:

1) Любой неприводимый многочлен над k имеет различные корни в алгебраическом замыкании k.
2) Каждое конечное расширение k является сепарабельным.
3) Каждое алгебраическое расширение k является сепарабельным.
4) k имеет характеристику 0 либо k имеет характеристику p > 0 и каждый элемент k является p-й степенью.
5) k имеет характеристику 0 либо k имеет характеристику p > 0 и эндоморфизм Фробениуса является автоморфизмом.
6) k совпадает со множеством неподвижных точек k-автоморфизмов алгебраического замыкания k.

В противном случае поле называется несовершенным.

Совершенные поля полезны тем, что теория Галуа над ними становится значительно проще, так как условие сепарабельности расширений поля выполняется автоматически.

Более общо, кольцо характеристики p называется совершенным, если эндоморфизм Фробениуса для него является автоморфизмом.[1] (В случае целостных колец это эквивалентно условию "каждый элемент является p-й степенью).

ПримерыПравить

Большинство полей, появляющихся на практике, совершенные. Примеры несовершенных полей доставляет алгебраическая геометрия в характеристике p > 0. Например, поле рациональных функций от одной переменной над полем характеристики p является несовершенным, так как в этом поле отсутствует p-й корень из x.

Совершенное замыканиеПравить

В характеристике p > 0 можно «сделать» поле k совершенным, добавив к нему корни pr-й степени (r≥1) из всех элементов. Получившееся поле называется совершенным замыканием k и обычно обозначается  .

В терминах универсального свойства, совершенное замыкание кольца   характеристики   — это совершенное кольцо   характеристики   вместе с гомоморфизмом колец  , таким что для любого совершенного кольца   характеристики   с гомоморфизмом   существует единственный гомоморфизм  , такой что  . Совершенное замыкание существует для любого кольца[2], следовательно, функтор совершенного замыкания существует и является левым сопряженным забывающего функтора из категории совершенных колец в категорию колец.

ПримечанияПравить

  1. Serre, 1979, Section II.4
  2. Bourbaki, 2003, Section V.5.1.4, page 111

ЛитератураПравить