Сверху интегрирование по Риману, снизу — по Лебегу
Все функции, определённые на конечном отрезкечисловой прямой и интегрируемые по Риману, являются также интегрируемыми по Лебегу, причём в этом случае оба интеграла равны. Однако существует большой класс функций, определённых на отрезке и интегрируемых по Лебегу, но неинтегрируемых по Риману. Также интеграл Лебега может иметь смысл для функций, заданных на произвольных множествах (интеграл Фреше).
Идея построения интеграла Лебега[1] состоит в том, что вместо разбиенияобласти определения подынтегральной функции на части и составления потом интегральной суммы из значений функции на этих частях, на интервалы разбивают её область значений, а затем суммируют с соответствующими весами меры прообразов этих интервалов.
Интеграл Лебега определяют пошагово, переходя от более простых функций к сложным. Будем считать, что дано пространство с мерой, и на нём определена измеримая функция, где — борелевская -алгебра на вещественной оси.
Определение 1. Пусть — индикатор некоторого измеримого множества, то есть , где .
Тогда интеграл Лебега функции по определению:
Определение 2. Пусть — простая функция, то есть , где , а — конечное разбиение на измеримые множества.
Тогда
.
Определение 3. Пусть теперь — неотрицательная функция, то есть .
Рассмотрим все простые функции , такие что .
Обозначим это семейство . Для каждой функции из этого семейства уже определён интеграл Лебега.
Тогда интеграл от задаётся формулой:
.
Наконец, если функция произвольного знака, то её можно представить в виде разности двух неотрицательных функций. Действительно, легко видеть, что:
где
.
Определение 4. Пусть — произвольная измеримая функция.
Тогда её интеграл задаётся формулой:
.
Определение 5. Пусть наконец произвольное измеримое множество. Тогда по определению
Рассмотрим функцию Дирихле, заданную на , где — борелевская σ-алгебра на , а — мера Лебега. Эта функция принимает значение в рациональных точках и в иррациональных. Легко увидеть, что не интегрируема в смысле Римана. Однако, она является простой функцией на пространстве с конечной мерой, ибо принимает только два значения, а потому её интеграл Лебега определён и равняется:
Действительно, мера отрезка равна 1,
и так как множество рациональных чисел счётно, то его мера равна 0,
а значит мера иррациональных чисел равна .
Указанная функция (коричневая) при возрастающем на фоне функции (зелёная)
Из семейства ➤ всегда можно выделить такую последовательность функций , что последовательность их значений в любой точке из одновременно монотонно неубывает и стремится к
Для этого найдём разложение , где имеют конечную меру (подразумевается, что мера сигма-конечна). Теперь рассмотрим последовательность следующих функций. Когда меньше и принадлежит объединению , функция равна целой части произведения , делённой на ; в таком случае происходит округление с точностью до соответствующей степени двойки (иначе говоря, при функция равна ). Когда не меньше и принадлежит указанному объединению, функция равна ; Когда этому объединению не принадлежит, она равна нулю. Формализуя вышесказанное,
Тогда понятно, что все простые, так как принимают ненулевые только значения из , коих конечное количество, на множествах конечной меры. В то же время для целой части верны неравенства
Так как , измеримая функция интегрируема по Лебегу тогда и только тогда, когда функция интегрируема по Лебегу. Это свойство не выполняется в отношении интеграла Римана;
В зависимости от выбора пространства, меры и функции, интеграл может быть конечным или бесконечным. Если интеграл функции конечен, то функция называется интегрируемой по Лебегу или суммируемой;
Если функция определена на вероятностном пространстве и измерима, то она называется случайной величиной, а её интеграл называют математическим ожиданием или средним. Случайная величина интегрируема, если она имеет конечное математическое ожидание.
В следующих свойствах интеграл Лебега рассматривается как функция
от измеримого множества для некоторой измеримой интегрируемой функции [2].
Интеграл Лебега счётно-аддитивен, то есть интеграл по счётному объединению непересекающихся множеств равен сумме интегралов по этим множествам:
.
Если функция неотрицательна, интеграл Лебега является счётно-аддитивной мерой на кольце множеств, на которых интегрируема.
Неравенство Чебышёва. Если функция неотрицательна на множестве , то для любого положительного мера множества всех из , для которых значение не меньше , сама не больше интеграла от по , делённому на :
.
Интеграл Лебега абсолютно непрерывен. Это значит, что для любого положительного найдётся такое положительное , что модуль интеграла от по любому множеству , меры меньше , меньше :
Обозначим за множество всех из , для которых модуль лежит в промежутке : , за — всех , для которых этот модуль больше : , а за — дополнение
Так как объединение множеств для всех целых неотрицательных есть всё множество , в силу счётной аддитивности интеграл от по равен сумме интегралов по Но интегрируема, поэтому её модуль интегрируем, а значит такая бесконечная сумма сходится. Как следствие, найдётся такое целое , что
Теперь возьмём меньшим Тогда из того, что мера множества меньше , следует искомое неравенство:
Интегральными суммами Лебега для функции и меры называются суммы вида
,
где — разбиение области значений функции .
Каждая такая сумма является интегралом Лебега от простой функции, аппроксимирующей функцию в каждой точке она принимает одно из значений (а именно, на подмножестве ). Поэтому, если функция интегрируема по Лебегу, эти суммы сходятся к её интегралу, когда , , и диаметр разбиения стремится к нулю.
Особенность интегральных сумм Лебега состоит в том, что для их вычисления не требуется вычислять значения интегрируемой функции — нужна на самом деле лишь функция распределения её значений:
Если функция распределения имеет плотность: , то интегральные суммы Лебега преобразуются в интегральные суммы Римана:
.
Поскольку функции распределения естественным образом возникают в теории вероятностей, статистической и квантовой физике, то и интегральные суммы Лебега фактически используются для вычисления интеграла Лебега, в основном, в приложениях этих теорий. Чаще же всего интеграл Лебега вычисляется как равный ему интеграл Римана (в тех случаях, когда последний имеет смысл).
Сходимость интегралов Лебега от последовательностей функций
Проставить сноски, внести более точные указания на источники.
Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.