Открыть главное меню
3-мерный выпуклый многогранник

Выпуклый многогранник — частный случай многогранника, пересечение конечного числа замкнутых полупространств.

Иногда термин «многогранник» используется для обозначения выпуклого многогранника.

ОпределенияПравить

Обычно выпуклый многогранник определяется как пересечение конечного числа замкнутых полупространств Евклидова пространства.

Часто дополнительно предполагается, что выпуклый многогранник ограничен. В этом случае выпуклый многогранник можно также определить как выпуклую оболочку конечного числа точек.

Связанные определенияПравить

  • Выпуклый многогранник называется невырожденным или телесным если он имеет внутренние точки.
  • Гранью выпуклого многогранника является пересечение многогранника полупространством, при котором никакая внутренняя точка многогранника не лежит на границе полупространства.
    • 0-мерные грани называются вершинами,
    • 1-мерные грани называются рёбрами.
  • n-мерный телесный многогранник называется простым если в каждой его вершине сходится ровно n рёбер.
  • Два многогранника называются комбинаторно изоморфными, если их решётки граней изоморфны.
  • Граф многогранника — это граф образованный его вершинами и рёбрами, все грани больших размерностей игнорируются.
  • Задание многогранника через гиперплоскости граней называется H-представлением.
  • Задание многогранника как выпукую оболочку его вершин называется V-представлением.

ПримерыПравить

СвойстваПравить

  • Грани выпуклого многогранника образуют решётку с эйлеровым частичным порядком, которая называется решёткой граней, где частичный порядок определяется принадлежностью граней. Определение грани, данное выше, позволяет как сам многогранник, так и пустое множество считать гранями. Весь многогранник является единственным максимальным элементом решётки, а пустое множество, являясь (−1)-мерной гранью (пустой многогранник), является единственным минимальным элементом многогранника.
  • Как показал Уитни[3], решётка граней трёхмерного многогранника определяется его графом. То же самое верно, если многогранник является простым (Blind & Mani-Levitska (1987), в книге Kalai (1988) дано простое доказательство). Последний факт является инструментом в доказательстве, что с точки зрения вычислительной сложности задача определения, являются ли два выпуклых многогранника комбинаторно изоморфными, эквивалентна задаче определения, являются ли графы изоморфными, даже если ограничиться классами простых или симплексных многогранников.[4]
  • Любой выпуклый многогранник допускает триангуляцию с множеством вершин совпадающим с множеством вершин многогранника.[5]

Вариации и обобщенияПравить

См. такжеПравить

СсылкиПравить

  1. https://scientificrussia.ru/articles/new-class-of-polyhedra-discovered Новый класс геометрических фигур назвали многранником Голдберга
  2. Glen Bredon[en]. Topology and Geometry. — 1993. — ISBN 0-387-97926-3, p. 56..
  3. Hassler Whitney. Congruent graphs and the connectivity of graphs // Amer. J. Math.. — 1932. — Т. 54, вып. 1. — С. 150–168.
  4. Volker Kaibel, Alexander Schwartz. {{{заглавие}}} // Graphs and Combinatorics. — 2003. — Т. 19, вып. 2. — С. 215–230. Архивировано 21 июля 2015 года.
  5. B. Büeler, A. Enge, K. Fukuda. Exact Volume Computation for Polytopes: A Practical Study. Polytopes — Combinatorics and Computation.. — 2000. — С. 131. — ISBN 978-3-7643-6351-2. — DOI:10.1007/978-3-0348-8438-9_6..

СсылкиПравить