Евклидово пространство
Евкли́дово простра́нство (также эвкли́дово пространство) — в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность, равную 3, то есть является трёхмерным.
В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов: конечномерное вещественное векторное пространство с введённым на нём положительно определённым скалярным произведением; либо метрическое пространство, соответствующее такому векторному пространству. Некоторые авторы ставят знак равенства между евклидовым и предгильбертовым пространством. В этой статье за исходное будет взято первое определение.
-мерное евклидово пространство обычно обозначается ; также часто используется обозначение , когда из контекста ясно, что пространство снабжено естественной евклидовой структурой.
Формальное определениеПравить
Для определения евклидова пространства проще всего взять в качестве основного понятие скалярного произведения. Евклидово векторное пространство определяется как конечномерное векторное пространство над полем вещественных чисел, на парах векторов которого задана вещественнозначная функция обладающая следующими тремя свойствами:
- Билинейность: для любых векторов и для любых вещественных чисел и
- Симметричность: для любых векторов
- Положительная определённость: для любого причём
Аффинное пространство, соответствующее такому векторному пространству, называется евклидовым аффинным пространством, или просто евклидовым пространством[1].
Пример евклидова пространства — координатное пространство состоящее из всевозможных наборов вещественных чисел скалярное произведение в котором определяется формулой
Длины и углыПравить
Заданного на евклидовом пространстве скалярного произведения достаточно для того, чтобы ввести геометрические понятия длины и угла. Длина вектора определяется как и обозначается [2][3] Положительная определённость скалярного произведения гарантирует, что длина ненулевого вектора ненулевая, а из билинейности следует, что то есть длины пропорциональных векторов пропорциональны.
Угол между векторами и определяется по формуле Из теоремы косинусов следует, что для двумерного евклидова пространства (евклидовой плоскости) данное определение угла совпадает с обычным. Ортогональные векторы, как и в трёхмерном пространстве, можно определить как векторы, угол между которыми равен
ЗамечаниеПравить
В данном выше определении угла остался один пробел: для того, чтобы был определён, необходимо, чтобы выполнялось неравенство Это неравенство действительно выполняется в произвольном евклидовом пространстве, оно называется неравенством Коши — Буняковского. Из этого неравенства, в свою очередь, следует неравенство треугольника: Неравенство треугольника, вместе с перечисленными выше свойствами длины, означает, что длина вектора является нормой на евклидовом векторном пространстве, а функция задаёт на евклидовом пространстве структуру метрического пространства (эта функция называется евклидовой метрикой). В частности, расстояние между элементами (точками) и координатного пространства задаётся формулой
Алгебраические свойстваПравить
Ортонормированные базисыПравить
Ортонормированный базис в евклидовом (векторном) пространстве — это базис, состоящий из попарно ортогональных векторов единичной нормы. Ортонормированные базисы наиболее удобны для вычислений. Так, например, скалярное произведение векторов с координатами и в ортонормированном базисе можно вычислять по формуле В любом евклидовом пространстве существует ортонормированный базис. Выбрав в двух евклидовых пространствах ортонормированные базисы и переведя один из них в другой линейным отображением, можно доказать, что любые два евклидовых пространства одинаковой размерности изоморфны[4] (в частности, -мерное евклидово пространство изоморфно со стандартным скалярным произведением).
Ортогональные проекцииПравить
Вектор называется ортогональным подпространству, если он ортогонален всем векторам этого подпространства. Ортогональная проекция вектора на подпространство — это вектор ортогональный такой что представим в виде где Расстояние между концами векторов и является минимальным расстоянием среди расстояний от конца вектора до подпространства Ортогональная проекция вектора на подпространство всегда существует, для её построения достаточно применить метод ортогонализации Грама — Шмидта к объединению ортонормированного базиса в подпространстве и этого вектора. Ортогональные проекции в пространствах больших размерностей используются, например, в методе наименьших квадратов.
Сопряжённые пространства и операторыПравить
Любой вектор евклидова пространства задаёт линейный функционал на этом пространстве, определяемый как Это сопоставление является изоморфизмом между евклидовым пространством и двойственным к нему пространством[5] и позволяет их отождествлять без ущерба для вычислений. В частности, сопряжённые операторы можно рассматривать как действующие на исходном пространстве, а не на двойственном к нему, и определить самосопряжённые операторы как операторы, совпадающие с сопряжёнными к ним. В ортонормированном базисе матрица сопряжённого оператора является транспонированной к матрице исходного оператора, а матрица самосопряжённого оператора является симметричной.
Движения евклидова пространстваПравить
Движения евклидова пространства — это преобразования, сохраняющие метрику (также называются изометриями). Пример движения — параллельный перенос на вектор , переводящий точку в точку . Нетрудно увидеть, что любое движение является композицией параллельного переноса и преобразования, сохраняющего неподвижной одну точку. Выбрав неподвижную точку за начало координат, любое такое движение можно рассматривать как ортогональное преобразование. Ортогональные преобразования n-мерного евклидова пространства образуют группу, обозначаемую O(n). Выбрав в пространстве ортонормированный базис, эту группу можно представить как группу матриц n × n, удовлетворяющих условию , где — транспонированная матрица, а — единичная матрица.
ПримерыПравить
Наглядными примерами евклидовых пространств могут служить пространства:
- размерности (вещественная прямая),
- размерности (евклидова плоскость),
- размерности (евклидово трёхмерное пространство).
Более абстрактный пример:
- пространство вещественных многочленов степени, не превосходящей , со скалярным произведением, определённым как интеграл произведения по конечному отрезку (или по всей прямой, но с быстро спадающей весовой функцией, например ).
Примеры геометрических фигур в многомерном евклидовом пространстве:
- правильные многомерные многогранники (в частности, N-мерный куб, N-мерный октаэдр, N-мерный тетраэдр),
- гиперсфера.
Связанные определенияПравить
В этом разделе не хватает ссылок на источники информации. |
Под евклидовой метрикой может пониматься метрика, описанная выше, а также соответствующая риманова метрика.
Под локальной евклидовостью обычно имеют в виду то, что каждое касательное пространство риманова многообразия есть евклидово пространство со всеми вытекающими свойствами, например, возможностью (по гладкости метрики) ввести в малой окрестности точки координаты, в которых расстояние выражается (с точностью до какого-то порядка) в соответствии с описанным выше.
Метрическое пространство называют локально евклидовым также если возможно ввести на нём координаты, в которых метрика будет евклидовой (в смысле второго определения) всюду (или хотя бы на конечной области) — каковым, например, является риманово многообразие нулевой кривизны.
Вариации и обобщенияПравить
Замена основного поля с поля вещественных чисел на поле комплексных чисел даёт определение унитарного (или эрмитова) пространства.
Отказ от требования конечномерности даёт определение предгильбертова пространства. Отказ от требования положительной определённости скалярного произведения приводит к определению псевдоевклидова пространства. Требование полноты по метрике для предгильбертова пространства ведёт к определению гильбертова пространства; пространство квадратично-суммируемых последовательностей — гильбертово пространство, которое может рассматриваться как пространство векторов с бесконечным числом координат.
ПримечанияПравить
- ↑ Гельфанд, 1998, с. 35.
- ↑ Гельфанд, 1998, с. 39.
- ↑ Кострикин, Манин, 1986, с. 118.
- ↑ Шилов Г. Е. Введение в теорию линейных пространств. — М., Л., Гостехтеориздат, 1952. — с. 182
- ↑ Данный результат верен также для псевдоевклидовых и унитарных пространств, для гильбертовых пространств он более сложен и называется теоремой Рисса.
ЛитератураПравить
- Гельфанд И. М. Лекции по линейной алгебре. — 5-е. — М.: Добросвет, МЦНМО, 1998. — 319 с. — ISBN 5-7913-0015-8.
- Кострикин А. И., Манин Ю. И. Линейная алгебра и геометрия. — М.: Наука, 1986. — 304 с.
- Вулих Б. З. Введение в функциональный анализ. — М.: Физматлит, 1958. — 352 с. — 7500 экз.