Название
Обозначение
Параметр
Носитель
Плотность вероятности
f
(
x
)
{\displaystyle f(x)}
Функция распределения F(х)
Характеристическая функция
Математическое ожидание
Медиана
Мода
Дисперсия
Коэффициент асимметрии
Коэффициент эксцесса
Дифференциальная энтропия
Производящая функция моментов
Равномерное непрерывное
U
(
a
,
b
)
{\displaystyle U(a,b)}
a
,
b
∈
R
,
a
<
b
{\displaystyle a,b\in \mathbb {R} ,a<b}
,
a
{\displaystyle a}
— коэффициент сдвига ,
b
−
a
{\displaystyle b-a}
— коэффициент масштаба
[
a
,
b
]
{\displaystyle [a,b]}
1
b
−
a
I
{
x
∈
[
a
,
b
]
}
{\displaystyle {\dfrac {1}{b-a}}I\{x\in [a,b]\}}
x
−
a
b
−
a
I
{
x
∈
[
a
,
b
]
}
+
I
{
x
>
b
}
{\displaystyle {\dfrac {x-a}{b-a}}I\{x\in [a,b]\}+I\{x>b\}}
e
i
t
b
−
e
i
t
a
i
t
(
b
−
a
)
{\displaystyle {\dfrac {e^{itb}-e^{ita}}{it(b-a)}}}
a
+
b
2
{\displaystyle {\frac {a+b}{2}}}
a
+
b
2
{\displaystyle {\frac {a+b}{2}}}
любое число из отрезка
[
a
,
b
]
{\displaystyle [a,b]}
(
b
−
a
)
2
12
{\displaystyle {\frac {(b-a)^{2}}{12}}}
0
{\displaystyle 0}
−
6
5
{\displaystyle -{\frac {6}{5}}}
ln
(
b
−
a
)
{\displaystyle \ln(b-a)}
e
t
b
−
e
t
a
t
(
b
−
a
)
{\displaystyle {\frac {e^{tb}-e^{ta}}{t(b-a)}}}
Нормальное (гауссовское)
N
(
μ
,
σ
2
)
{\displaystyle N(\mu ,\sigma ^{2})}
μ
∈
R
{\displaystyle \mu \in \mathbb {R} }
— коэффициент сдвига ,
σ
>
0
{\displaystyle \sigma >0}
— коэффициент масштаба
R
{\displaystyle \mathbb {R} }
1
σ
2
π
e
−
(
x
−
μ
)
2
2
σ
2
{\displaystyle {\frac {1}{\sigma {\sqrt {2\pi }}}}\;e^{-{\frac {\left(x-\mu \right)^{2}}{2\sigma ^{2}}}}}
1
2
(
1
+
erf
(
x
−
μ
2
σ
2
)
)
{\displaystyle {\frac {1}{2}}\left(1+\operatorname {erf} \left({\frac {x-\mu }{\sqrt {2\sigma ^{2}}}}\right)\right)}
e
i
μ
t
−
σ
2
t
2
2
{\displaystyle e^{i\,\mu \,t-{\frac {\sigma ^{2}t^{2}}{2}}}}
μ
{\displaystyle \mu }
μ
{\displaystyle \mu }
μ
{\displaystyle \mu }
σ
2
{\displaystyle \sigma ^{2}}
0
{\displaystyle 0}
0
{\displaystyle 0}
ln
(
σ
2
π
e
)
{\displaystyle \ln \left(\sigma {\sqrt {2\,\pi \,e}}\right)}
e
μ
t
+
σ
2
t
2
2
{\displaystyle e^{\mu \,t+{\frac {\sigma ^{2}t^{2}}{2}}}}
Логнормальное
L
N
(
μ
,
σ
2
)
{\displaystyle LN(\mu ,\sigma ^{2})}
μ
∈
R
,
σ
>
0
{\displaystyle \mu \in \mathbb {R} ,\sigma >0}
(
0
;
+
∞
)
{\displaystyle (0;+\infty )}
1
x
σ
2
π
e
−
1
2
(
ln
(
x
)
−
μ
σ
)
2
{\displaystyle {\frac {1}{x\sigma {\sqrt {2\pi }}}}e^{-{\frac {1}{2}}\left({\frac {\ln(x)-\mu }{\sigma }}\right)^{2}}}
1
2
+
1
2
E
r
f
[
ln
(
x
)
−
μ
σ
2
]
{\displaystyle {\frac {1}{2}}+{\frac {1}{2}}\mathrm {Erf} \left[{\frac {\ln(x)-\mu }{\sigma {\sqrt {2}}}}\right]}
∑
n
=
0
∞
(
i
t
)
n
n
!
e
n
μ
+
n
2
σ
2
/
2
{\displaystyle \sum _{n=0}^{\infty }{\frac {(it)^{n}}{n!}}e^{n\mu +n^{2}\sigma ^{2}/2}}
e
μ
+
σ
2
/
2
{\displaystyle e^{\mu +\sigma ^{2}/2}}
e
μ
{\displaystyle e^{\mu }}
e
μ
−
σ
2
{\displaystyle e^{\mu -\sigma ^{2}}}
(
e
σ
2
−
1
)
e
2
μ
+
σ
2
{\displaystyle (e^{\sigma ^{2}}\!\!-1)e^{2\mu +\sigma ^{2}}}
(
e
σ
2
+
2
)
e
σ
2
−
1
{\displaystyle (e^{\sigma ^{2}}\!\!+2){\sqrt {e^{\sigma ^{2}}\!\!-1}}}
e
4
σ
2
+
2
e
3
σ
2
+
3
e
2
σ
2
−
6
{\displaystyle e^{4\sigma ^{2}}\!\!+2e^{3\sigma ^{2}}\!\!+3e^{2\sigma ^{2}}\!\!-6}
1
2
+
1
2
ln
(
2
π
σ
2
)
+
μ
{\displaystyle {\frac {1}{2}}+{\frac {1}{2}}\ln(2\pi \sigma ^{2})+\mu }
e
s
μ
+
1
2
s
2
σ
2
.
{\displaystyle e^{s\mu +{\tfrac {1}{2}}s^{2}\sigma ^{2}}.}
Гамма-распределение
Γ
(
α
,
β
)
{\displaystyle \Gamma (\alpha ,\beta )}
α
>
0
,
β
>
0
{\displaystyle \alpha >0,\beta >0}
R
+
{\displaystyle \mathbb {R} _{+}}
α
β
x
β
−
1
Γ
(
β
)
e
−
α
x
{\displaystyle {\frac {\alpha ^{\beta }x^{\beta -1}}{\Gamma (\beta )}}e^{-\alpha x}}
1
Γ
(
β
)
γ
(
β
,
α
x
)
{\displaystyle {\frac {1}{\Gamma (\beta )}}\gamma (\beta ,\alpha x)}
(
1
−
i
t
α
)
−
β
{\displaystyle \left(1-{\frac {it}{\alpha }}\right)^{-\beta }}
β
α
{\displaystyle {\frac {\beta }{\alpha }}}
β
−
1
α
{\displaystyle {\frac {\beta -1}{\alpha }}}
при
β
≥
1
{\displaystyle \beta \geq 1}
β
α
2
{\displaystyle {\frac {\beta }{\alpha ^{2}}}}
2
β
{\displaystyle {\frac {2}{\sqrt {\beta }}}}
6
β
{\displaystyle {\frac {6}{\beta }}}
β
−
ln
α
+
ln
Γ
(
β
)
+
(
1
−
β
)
ψ
(
β
)
{\displaystyle {\begin{aligned}\beta &-\ln \alpha +\ln \Gamma (\beta )\\&+(1-\beta )\psi (\beta )\end{aligned}}}
(
1
−
t
α
)
−
β
{\displaystyle \left(1-{\frac {t}{\alpha }}\right)^{-\beta }}
при
t
<
α
{\displaystyle t<\alpha }
Экспоненциальное
Exp
(
λ
)
{\displaystyle {\text{Exp}}(\lambda )}
λ
>
0
{\displaystyle \lambda >0}
R
+
{\displaystyle \mathbb {R} _{+}}
λ
e
−
λ
x
I
{
x
>
0
}
{\displaystyle \lambda e^{-\lambda x}I\{x>0\}}
1
−
e
−
λ
x
{\displaystyle 1-e^{-\lambda x}}
λ
λ
−
i
t
{\displaystyle {\frac {\lambda }{\lambda -it}}}
1
λ
{\displaystyle {\frac {1}{\lambda }}}
ln
(
2
)
/
λ
{\displaystyle \ln(2)/\lambda }
0
{\displaystyle 0}
λ
−
2
{\displaystyle \lambda ^{-2}}
2
{\displaystyle 2}
6
{\displaystyle 6}
1
−
ln
(
λ
)
{\displaystyle 1-\ln(\lambda )}
(
1
−
t
λ
)
−
1
{\displaystyle \left(1-{\frac {t}{\lambda }}\right)^{-1}}
Лапласа
Laplace
(
α
,
β
)
{\displaystyle {\text{Laplace}}(\alpha ,\beta )}
α
>
0
{\displaystyle \alpha >0}
— коэффициент масштаба ,
β
∈
R
{\displaystyle \beta \in \mathbb {R} }
— коэффициент сдвига
R
{\displaystyle \mathbb {R} }
α
2
e
−
α
|
x
−
β
|
{\displaystyle {\frac {\alpha }{2}}\,e^{-\alpha |x-\beta |}}
{
1
2
e
α
(
x
−
β
)
,
x
⩽
β
1
−
1
2
e
−
α
(
x
−
β
)
,
x
>
β
{\displaystyle {\begin{cases}{\frac {1}{2}}e^{\alpha (x-\beta )},&x\leqslant \beta \\1-{\frac {1}{2}}e^{-\alpha (x-\beta )},&x>\beta \end{cases}}}
α
2
α
2
+
t
2
e
i
t
β
{\displaystyle {\frac {\alpha ^{2}}{\alpha ^{2}+t^{2}}}e^{it\beta }}
β
{\displaystyle \beta }
β
{\displaystyle \beta }
β
{\displaystyle \beta }
2
α
2
{\displaystyle {\frac {2}{\alpha ^{2}}}}
0
{\displaystyle 0}
3
{\displaystyle 3}
ln
2
e
α
{\displaystyle \ln {\frac {2e}{\alpha }}}
e
β
t
1
−
α
2
t
2
для
|
t
|
<
1
/
α
{\displaystyle {\frac {e^{\beta t}}{1-\alpha ^{2}t^{2}}}{\text{ для }}|t|<1/\alpha }
Коши
Cauchy
(
x
0
,
γ
)
{\displaystyle {\text{Cauchy}}(x_{0},\gamma )}
x
0
{\displaystyle x_{0}}
— коэффициент сдвига ,
γ
>
0
{\displaystyle \gamma >0}
— коэффициент масштаба
R
{\displaystyle \mathbb {R} }
1
π
(
γ
γ
2
+
(
x
−
x
0
)
2
)
{\displaystyle {1 \over \pi }\left({\gamma \over \gamma ^{2}+(x-x_{0})^{2}}\right)}
1
π
a
r
c
t
g
(
x
−
x
0
γ
)
+
1
2
{\displaystyle {\frac {1}{\pi }}\mathrm {arctg} \left({\frac {x-x_{0}}{\gamma }}\right)+{\frac {1}{2}}}
e
i
x
0
t
−
γ
|
t
|
{\displaystyle e^{i\,x_{0}\,t-\gamma \,|t|}}
нет
x
0
{\displaystyle x_{0}}
x
0
{\displaystyle x_{0}}
+
∞
{\displaystyle +\infty }
нет
нет
ln
(
4
π
γ
)
{\displaystyle \ln(4\,\pi \,\gamma )}
нет
Бета-распределение
Beta
(
α
,
β
)
{\displaystyle {\text{Beta}}(\alpha ,\beta )}
α
>
0
,
β
>
0
{\displaystyle \alpha >0,\beta >0}
[
0
,
1
]
{\displaystyle [0,1]}
x
α
−
1
(
1
−
x
)
β
−
1
B
(
α
,
β
)
{\displaystyle {\frac {x^{\alpha -1}(1-x)^{\beta -1}}{{\text{B}}(\alpha ,\beta )}}}
I
x
(
α
,
β
)
{\displaystyle I_{x}(\alpha ,\beta )}
1
F
1
(
α
;
α
+
β
;
i
t
)
{\displaystyle {}_{1}F_{1}(\alpha ;\alpha +\beta ;i\,t)}
α
α
+
β
{\displaystyle {\frac {\alpha }{\alpha +\beta }}}
I
1
2
[
−
1
]
(
α
,
β
)
≈
α
−
1
3
α
+
β
−
2
3
{\displaystyle I_{\frac {1}{2}}^{[-1]}(\alpha ,\beta )\approx {\frac {\alpha -{\tfrac {1}{3}}}{\alpha +\beta -{\tfrac {2}{3}}}}}
для
α
,
β
>
1
{\displaystyle \alpha ,\beta >1}
α
−
1
α
+
β
−
2
{\displaystyle {\frac {\alpha -1}{\alpha +\beta -2}}}
для
α
>
1
,
β
>
1
{\displaystyle \alpha >1,\beta >1}
α
β
(
α
+
β
)
2
(
α
+
β
+
1
)
{\displaystyle {\frac {\alpha \beta }{(\alpha +\beta )^{2}(\alpha +\beta +1)}}}
2
(
β
−
α
)
α
+
β
+
1
(
α
+
β
+
2
)
α
β
{\displaystyle {\frac {2\,(\beta -\alpha ){\sqrt {\alpha +\beta +1}}}{(\alpha +\beta +2){\sqrt {\alpha \beta }}}}}
6
α
3
−
α
2
(
2
β
−
1
)
+
β
2
(
β
+
1
)
−
2
α
β
(
β
+
2
)
α
β
(
α
+
β
+
2
)
(
α
+
β
+
3
)
{\displaystyle 6\,{\frac {\alpha ^{3}-\alpha ^{2}(2\beta -1)+\beta ^{2}(\beta +1)-2\alpha \beta (\beta +2)}{\alpha \beta (\alpha +\beta +2)(\alpha +\beta +3)}}}
1
+
∑
k
=
1
∞
(
∏
r
=
0
k
−
1
α
+
r
α
+
β
+
r
)
t
k
k
!
{\displaystyle 1+\sum _{k=1}^{\infty }\left(\prod _{r=0}^{k-1}{\frac {\alpha +r}{\alpha +\beta +r}}\right){\frac {t^{k}}{k!}}}
хи-квадрат
χ
2
(
k
)
{\displaystyle \chi ^{2}(k)}
k
>
0
{\displaystyle k>0}
— число степеней свободы
R
+
{\displaystyle \mathbb {R} _{+}}
(
1
/
2
)
k
/
2
Γ
(
k
/
2
)
x
k
/
2
−
1
e
−
x
/
2
{\displaystyle {\frac {(1/2)^{k/2}}{\Gamma (k/2)}}x^{k/2-1}e^{-x/2}}
γ
(
k
/
2
,
x
/
2
)
Γ
(
k
/
2
)
{\displaystyle {\frac {\gamma (k/2,x/2)}{\Gamma (k/2)}}}
(
1
−
2
i
t
)
−
k
/
2
{\displaystyle (1-2\,i\,t)^{-k/2}}
k
{\displaystyle k}
примерно
k
−
2
/
3
{\displaystyle k-2/3}
k
−
2
{\displaystyle k-2}
если
k
≥
2
{\displaystyle k\geq 2}
2
k
{\displaystyle 2\,k}
8
/
k
{\displaystyle {\sqrt {8/k}}}
12
/
k
{\displaystyle 12/k}
k
2
+
ln
[
2
Γ
(
k
2
)
]
+
(
1
−
k
2
)
ψ
(
k
2
)
{\displaystyle {\frac {k}{2}}\!+\!\ln \left[2\Gamma \left({k \over 2}\right)\right]\!+\!\left(1\!-\!{\frac {k}{2}}\right)\psi \left({\frac {k}{2}}\right)}
(
1
−
2
t
)
−
k
/
2
{\displaystyle (1-2\,t)^{-k/2}}
, если
2
t
<
1
{\displaystyle 2\,t<1}
Стьюдента
t
(
n
)
{\displaystyle {\text{t}}(n)}
n
>
0
{\displaystyle n>0}
— число степеней свободы
R
{\displaystyle \mathbb {R} }
Γ
(
n
+
1
2
)
n
π
Γ
(
n
2
)
(
1
+
x
2
n
)
−
n
+
1
2
{\displaystyle {\frac {\Gamma ({\frac {n+1}{2}})}{{\sqrt {n\pi }}\,\Gamma ({\frac {n}{2}})}}(1+{\frac {x^{2}}{n}})^{-{\frac {n+1}{2}}}}
1
2
+
x
Γ
(
n
+
1
2
)
2
F
1
(
1
2
,
n
+
1
2
;
3
2
;
−
x
2
n
)
π
n
Γ
(
n
2
)
{\displaystyle {\frac {1}{2}}+{x\Gamma \left({\frac {n+1}{2}}\right)}{\frac {\,_{2}F_{1}\left({\frac {1}{2}},{\frac {n+1}{2}};{\frac {3}{2}};-{\frac {x^{2}}{n}}\right)}{{\sqrt {\pi n}}\,\Gamma ({\frac {n}{2}})}}}
K
n
/
2
(
n
|
t
|
)
⋅
(
n
|
t
|
)
n
/
2
Γ
(
n
/
2
)
2
n
/
2
−
1
{\displaystyle {\frac {K_{n/2}\left({\sqrt {n}}|t|\right)\cdot \left({\sqrt {n}}|t|\right)^{n/2}}{\Gamma (n/2)2^{n/2-1}}}}
для
n
>
0
{\displaystyle n>0}
0
{\displaystyle 0}
, если
n
>
1
{\displaystyle n>1}
0
{\displaystyle 0}
0
{\displaystyle 0}
n
n
−
2
{\displaystyle {\frac {n}{n-2}}}
, если
n
>
2
{\displaystyle n>2}
0
{\displaystyle 0}
, если
n
>
3
{\displaystyle n>3}
6
n
−
4
{\displaystyle {\frac {6}{n-4}}}
, если
n
>
4
{\displaystyle n>4}
n
+
1
2
[
ψ
(
1
+
n
2
)
−
ψ
(
n
2
)
]
+
log
[
n
B
(
n
2
,
1
2
)
]
{\displaystyle {\begin{matrix}{\frac {n+1}{2}}\left[\psi ({\frac {1+n}{2}})-\psi ({\frac {n}{2}})\right]\\[0.5em]+\log {\left[{\sqrt {n}}B({\frac {n}{2}},{\frac {1}{2}})\right]}\end{matrix}}}
Нет
Фишера
F
(
d
1
,
d
2
)
{\displaystyle F(d_{1},d_{2})}
d
1
>
0
,
d
2
>
0
{\displaystyle d_{1}>0,\ d_{2}>0}
- числа степеней свободы
R
+
{\displaystyle \mathbb {R} _{+}}
(
d
1
x
)
d
1
d
2
d
2
(
d
1
x
+
d
2
)
d
1
+
d
2
x
B
(
d
1
2
,
d
2
2
)
{\displaystyle {\frac {\sqrt {\frac {(d_{1}\,x)^{d_{1}}\,\,d_{2}^{d_{2}}}{(d_{1}\,x+d_{2})^{d_{1}+d_{2}}}}}{x\,\mathrm {B} \!\left({\frac {d_{1}}{2}},{\frac {d_{2}}{2}}\right)}}}
I
d
1
x
d
1
x
+
d
2
(
d
1
/
2
,
d
2
/
2
)
{\displaystyle I_{\frac {d_{1}x}{d_{1}x+d_{2}}}(d_{1}/2,d_{2}/2)}
Γ
(
d
1
+
d
2
2
)
Γ
(
d
2
2
)
U
(
d
1
2
,
1
−
d
2
2
,
−
d
2
d
1
ı
s
)
{\displaystyle {\frac {\Gamma ({\frac {d_{1}+d_{2}}{2}})}{\Gamma ({\tfrac {d_{2}}{2}})}}U\!\left({\frac {d_{1}}{2}},1-{\frac {d_{2}}{2}},-{\frac {d_{2}}{d_{1}}}\imath s\right)}
d
2
d
2
−
2
{\displaystyle {\frac {d_{2}}{d_{2}-2}}}
, если
d
2
>
2
{\displaystyle d_{2}>2}
d
1
−
2
d
1
d
2
d
2
+
2
{\displaystyle {\frac {d_{1}-2}{d_{1}}}\;{\frac {d_{2}}{d_{2}+2}}}
, если
d
1
>
2
{\displaystyle d_{1}>2}
2
d
2
2
(
d
1
+
d
2
−
2
)
d
1
(
d
2
−
2
)
2
(
d
2
−
4
)
,
{\displaystyle {\frac {2\,d_{2}^{2}\,(d_{1}+d_{2}-2)}{d_{1}(d_{2}-2)^{2}(d_{2}-4)}},}
если
d
2
>
4
{\displaystyle d_{2}>4}
(
2
d
1
+
d
2
−
2
)
8
(
d
2
−
4
)
(
d
2
−
6
)
d
1
(
d
1
+
d
2
−
2
)
,
{\displaystyle {\frac {(2d_{1}+d_{2}-2){\sqrt {8(d_{2}-4)}}}{(d_{2}-6){\sqrt {d_{1}(d_{1}+d_{2}-2)}}}},}
если
d
2
>
6
{\displaystyle d_{2}>6}
12
d
1
(
5
d
2
−
22
)
(
d
1
+
d
2
−
2
)
+
(
d
2
−
4
)
(
d
2
−
2
)
2
d
1
(
d
2
−
6
)
(
d
2
−
8
)
(
d
1
+
d
2
−
2
)
{\displaystyle 12{\frac {d_{1}(5d_{2}-22)(d_{1}+d_{2}-2)+(d_{2}-4)(d_{2}-2)^{2}}{d_{1}(d_{2}-6)(d_{2}-8)(d_{1}+d_{2}-2)}}}
ln
Γ
(
d
1
2
)
+
ln
Γ
(
d
2
2
)
−
ln
Γ
(
d
1
+
d
2
2
)
+
{\displaystyle \ln \Gamma \left({\tfrac {d_{1}}{2}}\right)+\ln \Gamma \left({\tfrac {d_{2}}{2}}\right)-\ln \Gamma \left({\tfrac {d_{1}+d_{2}}{2}}\right)+\!}
(
1
−
d
1
2
)
ψ
(
1
+
d
1
2
)
−
(
1
+
d
2
2
)
ψ
(
1
+
d
2
2
)
{\displaystyle \left(1-{\tfrac {d_{1}}{2}}\right)\psi \left(1+{\tfrac {d_{1}}{2}}\right)-\left(1+{\tfrac {d_{2}}{2}}\right)\psi \left(1+{\tfrac {d_{2}}{2}}\right)\!}
+
(
d
1
+
d
2
2
)
ψ
(
d
1
+
d
2
2
)
+
ln
d
1
d
2
{\displaystyle +\left({\tfrac {d_{1}+d_{2}}{2}}\right)\psi \left({\tfrac {d_{1}+d_{2}}{2}}\right)+\ln {\frac {d_{1}}{d_{2}}}\!}
Рэлея
R
a
y
l
e
i
g
h
(
σ
)
{\displaystyle \mathrm {Rayleigh} (\sigma )}
σ
{\displaystyle \sigma }
R
+
{\displaystyle \mathbb {R} _{+}}
x
σ
2
e
−
x
2
2
σ
2
{\displaystyle {\frac {x}{{\sigma }^{2}}}e^{-{\frac {{x}^{2}}{2{{\sigma }^{2}}}}}}
1
−
e
−
x
2
2
σ
2
{\displaystyle 1-e^{\frac {-x^{2}}{2\sigma ^{2}}}}
1
−
σ
t
e
−
σ
2
t
2
/
2
π
2
(
erfi
(
σ
t
2
)
−
i
)
{\displaystyle 1\!-\!\sigma te^{-\sigma ^{2}t^{2}/2}{\sqrt {\frac {\pi }{2}}}\!\left({\textrm {erfi}}\!\left({\frac {\sigma t}{\sqrt {2}}}\right)\!-\!i\right)}
π
2
σ
{\displaystyle {\sqrt {\frac {\pi }{2}}}\sigma }
σ
ln
(
4
)
{\displaystyle \sigma {\sqrt {\ln(4)}}}
σ
{\displaystyle \sigma }
(
2
−
π
/
2
)
σ
2
{\displaystyle \left(2-\pi /2\right){{\sigma }^{2}}}
2
π
(
π
−
3
)
(
4
−
π
)
3
/
2
{\displaystyle {\frac {2{\sqrt {\pi }}(\pi -3)}{(4-\pi )^{3/2}}}}
−
6
π
2
−
24
π
+
16
(
4
−
π
)
2
{\displaystyle -{\frac {6\pi ^{2}-24\pi +16}{(4-\pi )^{2}}}}
1
+
ln
(
σ
2
)
+
γ
2
{\displaystyle 1+\ln \left({\frac {\sigma }{\sqrt {2}}}\right)+{\frac {\gamma }{2}}}
1
+
σ
t
e
σ
2
t
2
/
2
π
2
(
erf
(
σ
t
2
)
+
1
)
{\displaystyle 1+\sigma t\,e^{\sigma ^{2}t^{2}/2}{\sqrt {\frac {\pi }{2}}}\left({\textrm {erf}}\left({\frac {\sigma t}{\sqrt {2}}}\right)\!+\!1\right)}
Вейбулла
W
(
k
,
λ
)
{\displaystyle \mathrm {W} (k,\lambda )}
λ
>
0
{\displaystyle \lambda >0}
- коэффициент масштаба ,
k
>
0
{\displaystyle k>0}
- коэффициент формы
R
+
{\displaystyle \mathbb {R} _{+}}
k
λ
(
x
λ
)
k
−
1
e
−
(
x
λ
)
k
{\displaystyle {\frac {k}{\lambda }}\left({\frac {x}{\lambda }}\right)^{k-1}e^{-\left({\frac {x}{\lambda }}\right)^{k}}}
1
−
e
−
(
x
λ
)
k
{\displaystyle 1-e^{-\left({\frac {x}{\lambda }}\right)^{k}}}
∑
n
=
0
∞
(
i
t
)
n
λ
n
n
!
Γ
(
1
+
n
/
k
)
{\displaystyle \sum _{n=0}^{\infty }{\frac {(it)^{n}\lambda ^{n}}{n!}}\Gamma (1+n/k)}
λ
Γ
(
1
+
1
k
)
{\displaystyle \lambda \Gamma \left(1+{\frac {1}{k}}\right)}
λ
ln
(
2
)
1
/
k
{\displaystyle \lambda \ln(2)^{1/k}}
λ
(
k
−
1
)
1
k
k
1
k
,
{\displaystyle {\frac {\lambda (k-1)^{\frac {1}{k}}}{k^{\frac {1}{k}}}},}
для
k
>
1
{\displaystyle k>1}
λ
2
Γ
(
1
+
2
k
)
−
μ
2
{\displaystyle \lambda ^{2}\Gamma \left(1+{\frac {2}{k}}\right)-\mu ^{2}}
Γ
(
1
+
3
k
)
λ
3
−
3
μ
Γ
(
1
+
2
k
)
λ
2
+
2
μ
3
σ
3
{\displaystyle {\frac {\Gamma (1+{\frac {3}{k}})\lambda ^{3}-3\mu \Gamma (1+{\frac {2}{k}})\lambda ^{2}+2\mu ^{3}}{\sigma ^{3}}}}
λ
4
Γ
(
1
+
4
k
)
−
4
λ
3
μ
Γ
(
1
+
3
k
)
+
6
λ
2
μ
2
Γ
(
1
+
2
k
)
−
3
μ
4
σ
4
{\displaystyle {\frac {\lambda ^{4}\Gamma \left(1+{\frac {4}{k}}\right)-4\lambda ^{3}\mu \Gamma \left(1+{\frac {3}{k}}\right)+6\lambda ^{2}\mu ^{2}\Gamma \left(1+{\frac {2}{k}}\right)-3\mu ^{4}}{\sigma ^{4}}}}
γ
(
1
−
1
k
)
+
(
λ
k
)
k
+
ln
(
λ
k
)
{\displaystyle \gamma \left(1\!-\!{\frac {1}{k}}\right)+\left({\frac {\lambda }{k}}\right)^{k}+\ln \left({\frac {\lambda }{k}}\right)}
∑
n
=
0
∞
t
n
λ
n
n
!
Γ
(
1
+
n
/
k
)
,
k
≥
1
{\displaystyle \sum _{n=0}^{\infty }{\frac {t^{n}\lambda ^{n}}{n!}}\Gamma (1+n/k),\ k\geq 1}
Логистическое
L
(
μ
,
s
)
{\displaystyle L(\mu ,s)}
μ
{\displaystyle \mu }
,
s
>
0
{\displaystyle s>0}
R
{\displaystyle \mathbb {R} }
e
−
(
x
−
μ
)
/
s
s
(
1
+
e
−
(
x
−
μ
)
/
s
)
2
{\displaystyle {\frac {e^{-(x-\mu )/s}}{s\left(1+e^{-(x-\mu )/s}\right)^{2}}}}
1
1
+
e
−
(
x
−
μ
)
/
s
{\displaystyle {\frac {1}{1+e^{-(x-\mu )/s}}}}
e
i
μ
t
B
(
1
−
i
s
t
,
1
+
i
s
t
)
{\displaystyle e^{i\mu t}\,\mathrm {B} (1-ist,\;1+ist)}
для
|
i
s
t
|
<
1
{\displaystyle |ist|<1}
μ
{\displaystyle \mu }
μ
{\displaystyle \mu }
μ
{\displaystyle \mu }
π
2
3
s
2
{\displaystyle {\frac {\pi ^{2}}{3}}s^{2}}
0
{\displaystyle 0}
6
/
5
{\displaystyle 6/5}
ln
(
s
)
+
2
{\displaystyle \ln(s)+2}
e
μ
t
B
(
1
−
s
t
,
1
+
s
t
)
{\displaystyle e^{\mu \,t}\,\mathrm {B} (1-s\,t,\;1+s\,t)}
для
|
s
t
|
<
1
{\displaystyle |s\,t|<1}
Вигнера
ρ
(
R
)
{\displaystyle \rho (R)}
R
>
0
{\displaystyle R>0}
- радиус
[
−
R
;
+
R
]
{\displaystyle [-R;+R]}
2
π
R
2
R
2
−
x
2
{\displaystyle {\frac {2}{\pi R^{2}}}\,{\sqrt {R^{2}-x^{2}}}}
1
2
+
x
R
2
−
x
2
π
R
2
+
arcsin
(
x
R
)
π
{\displaystyle {\frac {1}{2}}+{\frac {x{\sqrt {R^{2}-x^{2}}}}{\pi R^{2}}}+{\frac {\arcsin \!\left({\frac {x}{R}}\right)}{\pi }}}
для
−
R
≤
x
≤
R
{\displaystyle -R\leq x\leq R}
2
J
1
(
R
t
)
R
t
{\displaystyle 2\,{\frac {J_{1}(R\,t)}{R\,t}}}
0
{\displaystyle 0}
0
{\displaystyle 0}
0
{\displaystyle 0}
R
2
4
{\displaystyle {\frac {R^{2}}{4}}}
0
{\displaystyle 0}
−
1
{\displaystyle -1}
ln
(
π
R
)
−
1
2
{\displaystyle \ln(\pi R)-{\frac {1}{2}}}
2
I
1
(
R
t
)
R
t
{\displaystyle 2\,{\frac {I_{1}(R\,t)}{R\,t}}}
Парето
Pareto
(
k
,
x
m
)
{\displaystyle {\text{Pareto}}(k,x_{\text{m}})}
x
m
>
0
{\displaystyle x_{\text{m}}>0}
— коэффициент масштаба ,
k
>
0
{\displaystyle k>0}
[
x
m
;
+
∞
)
{\displaystyle [x_{\text{m}};+\infty )}
k
x
m
k
x
k
+
1
{\displaystyle {\frac {k\,x_{\text{m}}^{k}}{x^{k+1}}}}
1
−
(
x
m
x
)
k
{\displaystyle 1-\left({\frac {x_{\text{m}}}{x}}\right)^{k}}
k
(
Γ
(
−
k
)
[
x
m
k
(
−
i
t
)
k
−
(
−
i
x
m
t
)
k
]
+
E
k+1
(
−
i
x
m
t
)
)
{\displaystyle k{\big (}\Gamma (-k){\big [}x_{\text{m}}^{k}(-it)^{k}-(-ix_{\text{m}}t)^{k}{\big ]}+E_{\text{k+1}}(-ix_{\text{m}}t){\big )}}
k
x
m
k
−
1
{\displaystyle {\frac {kx_{\text{m}}}{k-1}}}
, если
k
>
1
{\displaystyle k>1}
x
m
2
k
{\displaystyle x_{\text{m}}{\sqrt[{k}]{2}}}
x
m
{\displaystyle x_{\text{m}}}
(
x
m
k
−
1
)
2
k
k
−
2
{\displaystyle \left({\frac {x_{\text{m}}}{k-1}}\right)^{2}{\frac {k}{k-2}}}
при
k
>
2
{\displaystyle k>2}
2
(
1
+
k
)
k
−
3
k
−
2
k
{\displaystyle {\frac {2(1+k)}{k-3}}\,{\sqrt {\frac {k-2}{k}}}}
при
k
>
3
{\displaystyle k>3}
6
(
k
3
+
k
2
−
6
k
−
2
)
k
(
k
−
3
)
(
k
−
4
)
{\displaystyle {\frac {6(k^{3}+k^{2}-6k-2)}{k(k-3)(k-4)}}}
при
k
>
4
{\displaystyle k>4}
ln
(
k
x
m
)
−
1
k
−
1
{\displaystyle \ln \left({\frac {k}{x_{\text{m}}}}\right)-{\frac {1}{k}}-1}
нет